syllabus_chapitre_5
上传者:刘新民|上传时间:2015-04-25|密次下载
syllabus_chapitre_5
Review of Radiation Oncology Physics: A Handbook for Teachers and Students
CHAPTER 5.
ERVIN B. PODGORSAK
Department of Medical Physics
McGill University Health Centre
Montréal, Québec, Canada
5.1. INTRODUCTION
Since the inception of radiotherapy soon after the discovery of x-rays by Roentgen in 1895, the technology of x-ray production has first been aimed toward ever higher photon and electron beam energies and intensities, and more recently toward computerization and intensity-modulated beam delivery. During the first 50 years of radiotherapy, the techno-logical progress has been relatively slow and mainly based on x-ray tubes, Van de Graaff generators and betatrons.
The invention of the cobalt-60 teletherapy unit by H.E. Johns in Canada in the early 1950s provided a tremendous boost in the quest for higher photon energies, and placed the cobalt unit into the forefront of radiotherapy for a number of years. The concurrently developed medical linear accelerators (linacs), however, soon eclipsed the cobalt unit, moved through five increasingly sophisticated generations, and became the most widely used radiation source in modern radiotherapy. With its compact and efficient design, the linac offers excellent versatility for use in radiotherapy through isocentric mounting and provides either electron or megavoltage x-ray therapy with a wide range of energies.
In addition to linacs, electron and x-ray radiotherapy is also carried out with other types of accelerators, such as betatrons and microtrons. More exotic particles, such as protons, neutrons, heavy ions, and negative π mesons, all produced by special accelerators, are also sometimes used for radiotherapy; however, most of the contemporary radiotherapy is carried out with linacs or teletherapy cobalt units.
5.2. X-RAY BEAMS AND X-RAY UNITS
Clinical x-ray beams typically range in energy between 10 kVp and 50 MV, and
are produced when electrons with kinetic energies between 10 keV and 50 MeV
are decelerated in special metallic targets.
In the target, most of the electron's kinetic energy is transformed into heat and a
small fraction of the energy is emitted in the form of x-ray photons which are
divided into two groups: characteristic x-rays and bremsstrahlung x-rays.
103
C hapter 5. Treatment Machines for External Beam Radiotherapy
5.2.1. Characteristic x-rays
Characteristic x-rays result from Coulomb interactions between the incident
electrons and atomic orbital electrons of the target material (collisional loss).
In a given Coulomb interaction between the incident electron and an orbital
electron, the orbital electron is ejected from its shell and the resulting orbital
vacancy is filled by an electron from a higher level shell. The energy difference
between the two shells may be emitted from the atom either in the form of a
characteristic photon (characteristic x-ray) or is transferred to an orbital electron
which is ejected from the atom as an Auger electron.
The fluorescent yield ω gives the number of fluorescent (characteristic) photons
emitted per vacancy in a shell (0≤ω≤1) and ranges from 0 for low Z atoms
through 0.5 for copper (Z = 29) to 0.96 for high Z atoms for K-shell vacancies that
are the most prominent sources of characteristic x-rays.
The photons emitted through electronic shell transitions have discrete energies
that are characteristic of the particular target atom in which the transitions have
occurred; hence the term characteristic radiation.
5.2.2. Bremsstrahlung (continuous) x-rays
Bremsstrahlung x-rays result from Coulomb interactions between the incident
electron and the nuclei of the target material.
During the Coulomb interaction between the incident electron and the nucleus, the
incident electron is decelerated and loses part of its kinetic energy in the form of
bremsstrahlung photons (radiative loss).
Photons with energies ranging from 0 to the kinetic energy of the incident electron
may be produced, resulting in a continuous bremsstrahlung spectrum.
The bremsstrahlung spectrum produced in a given x-ray target depends on the
kinetic energy of the incident electron as well as on the thickness and atomic
number Z of the target.
5.2.3. X-ray targets
In comparison with the range R of electrons of a given kinetic energy KE in the
target material, targets are divided into two main groups: thin and thick.
A thin target has a thickness much smaller than R, while the thickness of a thick
target is on the order of R.
For thin target radiation, the energy radiated is proportional to the product
(KE)×Z, where Z is the target atomic number. The intensity versus photon energy
(photon spectrum) is constant from 0 to KE, and 0 for all energies above KE.
104
Review of Radiation Oncology Physics: A Handbook for Teachers and Students
A thick target may be considered as consisting of a large number of superimposed thin targets. The intensity I(hν) of a thick target spectrum is expressed as: I(hν)=CZ(KE hν) , where C hν is a proportionality constant and is the photon energy. (5.1) X-rays are used in diagnostic radiology for diagnosis of disease and in radiation oncology (radiotherapy) for treatment of disease. X-rays produced by electrons with kinetic energies between 10 keV and 100 keV
are called superficial x-rays, with electron kinetic energies between 100 keV and
500 keV orthovoltage x-rays, and with electron kinetic energies above 1 MeV
megavoltage x-rays.
Superficial and orthovoltage x-rays are produced with x-ray tubes (machines),
while megavoltage x-rays are most commonly produced with linacs and sometimes with betatrons and microtrons.
Typical thin and thick target bremsstrahlung spectra originating from 100 keV
electrons striking a thin and thick target, respectively, are shown in Fig. 5.1.
内容需要下载文档才能查看
FIG. 5.1. Typical thin target (curve 1) and thick target (curves 2, 3, and 4) spectra for an x-ray tube in which 100 keV electrons strike the target. Curve (1) is for a thin target producing a constant intensity for photon energies from 0 to the kinetic energy of electrons striking the target (100 keV). Curve (2) represents unfiltered spectrum (inside the x-ray tube) for a thick target and represents a superposition of numerous thin target spectra; spectrum of curve (3) is for a beam filtered by x-ray tube window (low energy photons are filtered out); spectrum of curve (4) is for beam filtered by the x-ray tube window and additional filtration.
105
C hapter 5. Treatment Machines for External Beam Radiotherapy
5.2.4. Clinical x-ray beams
A typical spectrum of a clinical x-ray beam consists of line spectra that are
characteristic of the target material and are superimposed onto the continuous
bremsstrahlung spectrum.
The bremsstrahlung spectrum originates in the x-ray target, while the
characteristic line spectra originate in the target and in any attenuators placed into
the beam.
The relative proportion of the number of characteristic photons to bremsstrahlung
photons in an x-ray beam spectrum varies with electron beam kinetic energy and
atomic number of the target. For example, x-ray beams produced in a tungsten
target by 100 keV electrons contain about 20% characteristic photons and 80%
bremsstrahlung photons, while in the megavoltage range the contribution of
characteristic photons to the total spectrum is negligible.
In the diagnostic energy range (10 to 150 kV) most photons are produced at 90°
from the direction of electron acceleration, while in the megavoltage energy range
(1 to 50 MV) most photons are produced in the direction of electron acceleration
(forward direction: 0°).
5.2.5. X-ray beam quality specifiers
Various parameters, such as photon spectrum, half-value layer, nominal accelerating potential, beam penetration into tissue-equivalent media, etc., are used as x-ray beam quality indices(ee Sections 9.8.1 and 9.8.2 for details):
Complete x-ray spectrum is very difficult to measure; however, it gives the most
rigorous description of beam quality.
Half-value layer (HVL) is practical for beam quality description in the superficial
(HVL in aluminum) and orthovoltage (HVL in copper) x-ray energy range, but not
practical in the megavoltage energy range because in this energy range the
attenuation coefficient is only a slowly varying function of beam energy .
The effective energy of a heterogeneous x-ray beam is defined as that energy of a
monoenergetic photon beam that yields the same HVL as does the heterogeneous
beam.
Nominal accelerating potential (NAP) is sometimes used for describing the
megavoltage beam quality. The NAP is determined by measuring the ionisation
ratio in a water phantom at depths of 10 and 20 cm for a 10×10 cm2 field at the
nominal source-axis distance of 100 cm.
Recent dosimetry protocols recommend the use of tissue-phantom ratios or
percentage depth doses at a depth of 10 cm in a water phantom as an indicator of
megavoltage beam effective energy (beam quality index).
106
Review of Radiation Oncology Physics: A Handbook for Teachers and Students
5.2.6.
X-ray machines for radiotherapy Superficial and orthovoltage x-rays used in radiation therapy are produced with x-
ray machines. The main components of a radiotherapeutic x-ray machine are: an
x-ray tube; ceiling or floor mount for the x-ray tube; target cooling system;
control console; and an x-ray power generator. A schematic diagram of a typical
therapy x-ray tube is shown in Fig. 5.2.
The electrons producing the x-ray beams in the x-ray tube (Coolidge tube) originate in the heated filament (cathode) and are accelerated in vacuum toward
the target (anode) by an essentially constant-potential electrostatic field supplied
by the x-ray generator.
The efficiency for x-ray production in the superficial and orthovoltage energy
range is on the order of 1% or less. Most of the electron kinetic energy deposited
in the x-ray target (≈99%) is transformed into heat and must be dissipated
through an efficient target cooling system.
To maximize the x-ray yield in the superficial and orthovoltage energy range the
target material should have a high atomic number Z and a high melting point.
With x-ray tubes, the patient dose is delivered using a timer and the treatment
time must incorporate the shutter correction time (see Section 6.16) that accounts
for the time required for the power supply components to attain the steady state
operating conditions.
The x-ray tube current is controlled by hot filament emission of electrons which,
in turn, is controlled by the filament temperature (thermionic emission). For a
given filament temperature the x-ray tube current increases with the tube (anode)
voltage, first rising linearly with voltage in the space charge limited region and
saturating at higher voltages when all electrons emitted from the cathode are
pulled to the anode.
Research is currently carried out on cold field emission cathodes produced with
carbon nanotubes (CNT). The CNT-based cold cathode x-ray technology may
lead to more durable as well as miniature and portable x-ray sources for industrial
and medical applications.
内容需要下载文档才能查看
FIG. 5.2. Schematic diagram of a typical therapy x-ray tube (Reprinted from Johns, H.E. and
Cunningham, J.R. with permission).
107
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 2011-2012学年四川仁寿联谊学校七年级下学期半期检测政治试卷(带解析)答案
- 黄道婆
- 六年级下册6《半截蜡烛》优质教案
- 冬阳童年骆驼队
- 给妈妈的一封信
- 2017人教版七下语文一单元检测题
- 兰德公司“T项目”研究及其对我国学前教育的启示
- 关于幼儿园转让协议
- 2011-2012学年吉林省长春外国语学校初二上学期第二次月考语文试卷答案
- 小学古诗词归类整理
- 王春亮民间推拿传艺文化
- 《回忆鲁迅先生》
- 中班美术教学计划
- 寒假前安全教育讲稿
- 陕西艺术幼儿园音乐活动教研心得(3.14)
- 洋县理光复印土管局大门北:在园幼儿晨检午检记录表
- 幼儿不慎溺水应遵循的急救办法
- 2016----2017年度小班名画欣赏
- 广东省佛山市均安镇星槎幼儿园工程可行性研究报告-广州中撰咨询
- 2010-2011学年北京市海淀区高三第二学期期末练习(语文)答案
- 给父母的一封廉洁家书33
- 幼儿园班级消毒记录表
- 如何对待逆反孩子
- 父母永不放弃自我成长,是孩子最好的教育!
- 给父母的一份廉洁家书
- 端午节安全教育
- 东华试题分类--阅读答案
- 广东省深圳市西丽幼儿园分园装修工程可行性研究报告-广州中撰咨询
- 人教版初中语文七年级(下)第7课:《土地的誓言》课件
- 小学复习必背古诗词答案
网友关注视频
- 外研版英语七年级下册module1unit3名词性物主代词讲解
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 二年级下册数学第二课
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
- 《空中课堂》二年级下册 数学第一单元第1课时
- 沪教版八年级下册数学练习册21.3(2)分式方程P15
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 人教版历史八年级下册第一课《中华人民共和国成立》
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
- 二年级下册数学第三课 搭一搭⚖⚖
- 六年级英语下册上海牛津版教材讲解 U1单词
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 外研版英语七年级下册module3 unit2第一课时
- 8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理