双金属表面相互作用机理
上传者:黎芳|上传时间:2015-04-25|密次下载
双金属表面相互作用机理
J.Phys.Chem.B2001,105,1817-18221817
TheoreticalStudyoftheInteractionofMolecularHydrogenwithPdCu(111)BimetallicSurfaces
CarmenSousa,VirineyaBertin,andFrancescIllas*
DepartamentdeQu?´micaF?´sicaiCentreEspecialdeRecercaenQu?´micaTeo`rica,UniVersitatdeBarcelonaC/Mart?´iFranque`s1,08028Barcelona,SpainReceiVed:September18,2000;InFinalForm:NoVember27,2000
AdensityfunctionalclustermodelapproachhasbeenappliedtothestudyoftheinteractionofmolecularhydrogenwithtwodifferentclustermodelsofthePdCu(111)surfacecorrespondingtoadifferentformalalloycompositionbothhavingasinglePdatominthesurface.Despitethesimilarsurfacemorphologyofthetwobimetallicclusters,theyexhibitaratherdifferentreactivitytowardmolecularhydrogen.ThecoordinationofthesurfacePdatomtootherPdatomsinthesecondlayerappearstobenecessaryforthisatombeabletotrapanddissociatemolecularhydrogenwithaverylowenergycost,thusbeingapotentialactivesiteforcatalysis.Thisimportantresultpointsoutthatelectronic,orligand,effectsdoalsoplayanimportantroleintheactivityofthePdCu(111)surfacesitestowardmolecularhydrogen.
I.Introduction
Bimetallicsystemsconstituteabroadclassofselectivecatalyststhatattempttoexploitandcombinethedifferentchemicalpropertiesofvariousmetalstowardagivenchemicalreaction.1-3Inparticular,bimetallicsystemshavebeenlongusedforhydrocarbonreforminginthepetrochemicalindustry.4-6Therequirementforefficientchemicalprocessesderivedfromthehugedemandinthehydrocarbonmarkettriggeredaratherlargenumberoffundamentalstudiesaimedtobetterunderstandtheparticularitiesofthesecatalyticsystems.Thedifferentactivityofbimetallicsystemswithrespecttothepuremetalshasbeenoftenrationalizedintermsoftwomaineffects;6-10thoseareusuallytermedasstructuralandelectronicorligandeffects,respectively.Thestructuraleffectreferstothepossiblechangesinthetypeanddistributionofactivesitesinanalloywithrespecttoasinglecomponent,whereastheelectroniceffectsareduetoprofoundchangesintheelectronicstructureofametalcausedbythepresenceofthesecondcomponent.Theconceptsofstructuralandelectroniceffectshavebeenveryusefultojustifythesuperiorcatalyticactivityofbimetallicsystems.However,fromamicroscopicpointofviewonemaywonderwhetherthedistinctionbetweenthetwoeffectsisstraightforwardorifitrequiresadetailedanalysisoftheelectronicstructureofeachparticularalloyandofitsreactivitytowardprobemolecules.LetusconsiderasingleAatominasimpleABbinarysystem.Fromapurelystructuralpointofview,theactivityofthissurfaceatomwillbethesame,independentofitscoordinationtootheratomsinthesecondlayer.However,itispossiblethatthisAsiteexhibitsadifferentreactivitydependingonitscoordinationinthesecondlayertoonlyAatomsoralsotoBatoms.
Amidtheseveralbinarysystemsthatareoftenusedinbasicandpracticalresearch,PdCuprovidesanexampleofaratherversatilecatalyticsystem.IthasbeenshownthatPdCucatalystsareabletosimultaneouslyoxidizeCOandtoreduceNO,11thusbeingofpracticalinterestintheautomotiveindustry.Likewise,PdCuisefficientinalkeneoxidation,12ethanoldecomposition,13
*Correspondingauthor.E-mail:f.illas@qf.ub.esandinseveralhydrogenationprocesses,e.g.,inCO,benzene,andtoluenehydrogenation.13-16Becauseofthesepeculiarities,PdCualloyshavealsobeeninvestigatedtheoretically.ThenatureoftheheterometallicbondinthesebinarysystemshasbeenstudiedbyFerna´ndez-Garc?´aetal.17usingaclustermodelapproachandfirstprinciplesdensityfunctionalcalculationsincludinganenergypartitioninganalysisbasedonthecon-strainedspaceorbitalvariation,CSOV,method.18-20ThepictureoftheelectronicstructurearisingfromthesestudiesisrathercomplexandinvolveschargetransferfromCu(4sp)orbitalstothePd(5sp)ones,Pd(4d)fPd(5sp)rehybridization,andalmostnegligiblechangesintheCu(3d)population.Indeed,itwasfoundthatsurfacePdatomscarryonasmallbutnoticeablenegativecharge.ThisfactisnotincontradictionwithapositiveshiftofthePdcore-levelsthatarisespreciselyfromthelargePd(4d)fPd(5sp)rehybridizationthatmoveselectrondensityawayfromthecoreregion.
Thechangesintheelectronicstructuredescribedabovehaveamarkedinfluenceinthechemicalreactivityofthesebinaryalloys.Foralargenumberofalloys,RodriguezandGoodman21werethefirsttoshowastrongcorrelationbetweenthecore-levelshiftsonthealloyinducedbyCOchemisorptionandtheCOdesorptiontemperature.Thiscorrelationwaslaterinterpretedasoriginatedbytheextentofπ-back-donationand,hence,attributedtothepositionofthemetaldband.22SubsequentclustermodelcalculationshavealsofoundanalmostlinearcorrelationbetweenthecalculatedinteractionenergiesandthePdcore-levelshifts.23However,theCSOVanalysisshowsthatthiscorrelationcannotbeexplainedintermsofback-donationonly.ThecomplexbehaviorofthebimetallicsystemsisfurtherillustratedbytheveryrecentstudyofLo´pezandNorskøv24concerningtheinteractionofCOonseveralPdCualloys.TheseauthorsshowthateventheinteractionofCOwiththeinactivecomponentofthealloyisenhancedwithrespecttothepuresystem.
AdditionalinformationaboutthereactivityofPdCubimetallicsurfacesrequirestheuseofaprobemoleculethatcouldexperiencesomechemicalreactionwithbreakingandforming
10.1021/jp003349hCCC:$20.00©2001AmericanChemicalSociety
PublishedonWeb02/08/2001
1818J.Phys.Chem.B,Vol.105,No.9,2001
bonds.MolecularhydrogenisnodoubtagoodcandidatebecauseH2dissociationisoneoftheimportantelementaryreactionsrelevanttovariouscatalyzedprocesses.1-4InthecaseofPdCutheH2dissociationisespeciallyimportantbecausethisbinarysystemiscurrentlyusedinhydrogenationprocesses.Furthermore,H2dissociatesonPdsurfaceswithalmostnoactivationenergy,25,26whereasitisratherunreactivetowardCusurfaces.Infact,ithasbeenshownthatH2doesnotdissociateonCu(111)atlowtemperatures.27Ontheotherhand,H2dissociatesonPd0.7Cu0.3surfaces,andtheexperimentalresultssuggestthatevensingleisolatedPdatomsonthesurfacesurroundedbyCuatomsareabletotrapandpossiblydissociateH2.28FromtheseexperimentsitissuggestedthatthestructuralfactorisimportantfortheinteractionofCOonPd0.7Cu0.3surfacesbutnotforH2dissociation.ThisconclusionfollowsfromthefactthatH2dissociationonPdCudoesnotrequirehavingthree-fold-likesitesinthePdCusurfacethataresimilartothoseofPd(111).ThisisbecausesinglePdatomsonPdCuarealsoreactiveforH2dissociation.28However,itisclearthattherearedifferentpossibilitiesforthecoordinationofPdatomsatthePdCu(111)surface,i.e.,withorwithoutPdatomsonthesecondlayer,andonemaywonderwhetherthisdifferencecanaffectthereactivityofthisactivesite.ThedifferentreactivityofsinglePdatomsonPdCusurfacestowardH2dissociationcanbeinvestigatedwiththehelpofcomputationalmodels.FollowingthestudyoftheinteractionofCOandNOonPdCu(111)byIllasetal.,23inthisworkwepresentatheoreticalmodelstudyoftheinteractionofmolecularhydrogenwithPdCusurfacesofdifferentcomposition.FromthisstudyitclearlyappearsthatevenifPdsingleatomsonthePdCusurfaceareabletotrapanddissociatemolecularhydrogen,ingoodagreementwithexperimentalobservations,theenvironmentofsuchactivesiteplaysafundamentalrole.
II.SurfaceClusterModelsandComputationalDetailsClustermodelshavebeenemployedtosimulatethe(111)surfaceofsubstitutionallydisorderedface-centeredcubic,fcc,alloysofformalPd40Cu60andPd8Cu92compositions.Thechoiceofthesedisorderedalloyscomesfromthefactthatpreparationmethodsofthesecatalystsfavorpreciselytheappearanceofdisorderedphases.15,29TwodifferentbutstructurallysimilaractivesitesforH2dissociationonthesePdCu(111)clustermodelshavebeenconsideredandthereactivitytowardH2comparedtothatexhibitedbythepuremetal,PdorCu,low-indexsurfaces.Bothsitesinvolveasingle-surfacePdatombutintwodifferentelectronicenvironments.Inthefirstcase,theactivesiteisrepresentedbyaPdCu12clustermodel,orPd1(1,0,0)Cu12(6,3,3)toindicatethenumberofatomsineachclusterlayer,wherethePdsurfaceatomiscompletelysur-roundedbyCuatoms.Withthismodel,onepretendstomimicaCu-richalloysuchasPd8Cu92.Inthesecondcase,thePdthreenearestneighborCuatomsinthesecondlayeraresubstitutedbyPdatoms,givingrisetothePd4Cu6clustermodel,orPd4(1,3)Cu6(6,0),whichisrepresentativeofthePd40Cu60alloys.NoticethatthisPd4Cu6clustermayalsoberegardedasatetrahedralPd4unitembeddedinCuatoms.Themetal-metaldistanceinthePdCu12andPd4Cu6clustersischosenfromthecorrespondingmeasuredvaluesforPd8Cu92andPd40Cu60alloys.22Hence,metal-metaldistancesof2.58and2.63ÅhavebeenusedforPdCu12andPd4Cu6,respectively.NoticethatthesePdCu12andPd4Cu6clustermodelshavealsobeenusedinprevioustheoreticalstudies.17,23TocomparethereactivityofthePdCualloymodelstothatofthepurecomponents,Pd10(7,3)andCu10(7,3)clustermodelshavebeenusedtorepresentthe
Sousaetal.
Figure1.SchematicrepresentationoftheBS,FS,andHSactivesitesconsideredforH2dissociativechemisorption.TheM10clustermodeldepictedinthefigurecaneitherrepresentPd10,Cu10,Pd4Cu6,orthetwofirstlayersofthePdCu12.Inthetwoformercases,allatomsareequal.InPd4Cu6,thefirstlayercentralatomandthoseonthesecondlayerarePdandthesixremainingatomsonthefirstlayerareCuand,finally,inPdCu12thefirstlayercentralatomisPdandallremainingatomsareCu.
Pd(111)andCu(111)surfaceswithmetal-metaldistancesfixedat2.75and2.56Åasinthebulk.31Theclustergeometryiseitherkeptfrozenatthegeometrydescribedaboveorfullyoptimizedfollowingtheproceduredescribedbelow.
TheinteractionofmolecularhydrogenwiththedifferentsurfaceclustermodelshasbeenstudiedbyfirstprinciplesdensityfunctionalcalculationsthatusethehybridB3LYPexchange-correlationfunctional32,33asimplementedintheGaussian98suiteofprograms.34Weusetherelativisticsmall-coreeffectivecorepotentials,ECP,derivedbyHayandWadt.35TheseECPsleaveexplicitlythe3s,3p,3d,and4selectronsofCuandthe4s,4p,4delectronsofPd.ItiscustomarytorefertotheseECPsasLANL2.Thestandarddouble-??basissetalsoreportedbyHayandWadt,35anddenotedasusualasLANL2DZ,wasusedtodescribetheelectrondensityofthevalenceelectronsofCuandPd,whereastheelectrondensityofthehydrogenatomswasdescribedwithastandard6-31G**basisset.36
BecauseitislikelythatH2willdissociateonsomeofthesurfaceclustermodelsusedinthepresentwork,astep-by-stepoptimizationgeometrystrategyhasbeenusedtobetterunder-standtheenergeticsofthedissociativechemisorptionofH2withthesebinaryalloys.Inafirststep,ageometryoptimizationfortheperpendiculardistanceoftheH2centerofmasstothesurfaceiscarriedoutmaintainingH2atitsequilibriumgeometry,0.742Å,andparalleltothesurfacewiththeclustergeometryfixedatthebulkvalues.TheH2moleculeisplacedabovethesurfacewiththeHatomspointingeachtowardonebridgesite,BS,onefccsite,FS,oronehcpsite,HS,surfacesite.(cf.Figure1).AperpendicularapproachoftheH2moleculedirectlyaboveasurfaceatom,a-topsite,isalsopossible,althoughthisisgenerallyunfavored.Ultimately,themoleculetiltsandtakesanuclearconfigurationwiththemolecularaxisparalleltothesurface.37Therefore,thisinitialperpendicularapproachhasnotbeenconsidered.ThegeometrysearchstartingfromtheBS,FS,andHSwithafixedinternucleardistanceforH2attemptstofindpossiblephysisorbedstates.
Hereitisworthpointingoutthatphysisorptionenergiesareintherangeofweakinteractionswherethecurrent
内容需要下载文档才能查看exchange-
H2InteractionwithPdCu(111)BimetallicSurfaces
correlationfunctionalshavedifficulties.38-40Nevertheless,themaingoalofthepresentapproachisnotadetaileddescriptionofphysisorption.ThestrategyfollowedinthisworkpermitsustoobtainaroughestimateoftheenergygainorcosttoadsorbundistortedH2onthevarioussurfaces.Inasecondstep,startingfromeachoneoftheconformationsabove-describedthepositionofeachHatomisallowedtovarywithoutanyfurtherconstraint.ThissecondgeometryoptimizationprovidesinformationaboutthedissociativechemisorptionofH2onthevarioussurfaces.Again,themaininterestisintheenergyprofileandfinalstructure.InsomecasesthefinalgeometrywillcorrespondtowellseparatedHatomsplacedabovethesurfacemodelandquitefarfromtheclusteredge.ThiswillbeinterpretedasthefingerprintofH2dissociation.However,inothercasesthefinalgeometrywillalsocorrespondtoseparateHatomsbutinteract-ingwiththeclusteredge.ThisfinalstructurerevealslimitationsoftheclustermodelbutdoesalsoindicatethatH2willnotdissociateintheregularsitesofthatsurface.Finally,inathirdstep,thegeometryofthewholesystemisallowedtovarywithoutanyspecificconstraint.ThisfinalsteppermitstocheckthestabilityoftheclustermodelswithrespecttodistortionandalsotoinvestigatetheeffectofH2dissociativechemisorptionontheoptimizedstructureofthenakedcluster.Thecomparisonoftheenergyprofileobtainedwiththerigidandoptimizedclusterwillalsoprovideusefulinformationaboutsimilaritiesanddifferencesbetweenthereactivityofalloysextendedsurfacesandthatofsmallbimetallicparticlesthatareoftenusedascatalysts.
Itisworthpointingoutthatwiththeoptimizationgeometrystrategyjustdescribed,onedoesnotpretendtofindallthepossiblelocalminimaoftheseclustermodels.Becausethefinaloptimizationiscarriedoutwithnoconstraintsandwithnosymmetryatall,itislikelythattheminimizationalgorithmwillreachtheenergyminimuminthepotentialenergyhypersurfacethatisclosesttothestartinggeometry.
Beforeclosingthissectionitisworthpointingoutthatthepresentcalculationshaveallbeencarriedoutbydeliberatelychoosingasingledclosed-shellelectronicstructureforthedifferentclustermodels.Atfirstsight,thischoicemayseeminadequatebecauseweareconsideringadissociationprocessthat,inprinciple,leadstoanopen-shellelectronicstructure.However,wemustrecallthatthedissociationprocesstakesplaceaboveametalsurfaceandthatmetal-hydrogenbondsareformedwhilethehydrogen-hydrogenbondbreaks.Noticethatonlythefinalstructuresareofinterestandthatnoattempthasbeenmadetolocatethepossibletransitionstatescorrespondingtodissociativechemisorption.Theuseofaclosed-shellelec-tronicstructuretolocatethetransitionstatemaybemorequestionable,althoughthisisalsoacommonpracticeinperiodicdensityfunctionalcalculations.26Withrespecttothemetalclustermodelsitiswell-knownthat,althoughPdandCuarenonmagneticmetals,smallPdn41-43andCun44clustersdonotnecessarilyhaveanonmagneticgroundstate.Panasetal.45haveproposedthatcalculatedchemisorptionenergiesthatarestablewithrespecttotheclustersizecanbeobtainedbychoosingahigherspinstatefortheclustermodel.However,Ricartetal.46haveshownthatthechoiceoftheelectronicstatedoesnotlargelyaffectthebasicbondingmechanism.Becausethemodelsusedinthisworkattempttosimulateextendedalloysthatdonotpossessnetmagneticmoments,thechoiceofaclosed-shellelectronicstructureconstitutesthenaturalreference.ThischoiceisalwayspossibleforanynumberofPdatomsintheclusterbutrequirestoincludeanevennumberofCuatomsintheCunclustermodel.
J.Phys.Chem.B,Vol.105,No.9,20011819
TABLEtheFinal1:ConfigurationComparisonofofHClusterandPeriodicResultsfor2onPd(111)a⊥
BSFS
HScluster
slab26clusterslab26clusterslab26dH-H(Å)2.882.792.872.792.942.79d⊥(Å)
0.961.010.760.840.790.84Eads(kcal/mol)14.57.618.011.519.410.4orderofstab.
3
3
2
1
1
2
a
ResultsaregivenfortheH-Hdistance,dH-H,theH-surfacedistance,d⊥,andtheinteractionenergy,Eads,withrespecttothenoninteractingH2andsurfacemodel.Theorderofstabilityofthedifferentconformationsisgiveninthelastrowofthetable.
III.InteractionofH2withPd(111)andCu(111)SurfacesTheinteractionofH2withthePd10andCu10clustermodelspermitstotesttheadequacyofthepresentcomputationalapproachbecausethosesystemshavebeenstudiedextensivelybothfromexperimentandtheoreticalpointsofview.25TheapproachofH2withafixedgeometryabovethePd10BS,FS,andHSsitesleadsalwaystoaminimumonthisparticularsectionofthepotentialenergysurfacebutwithenergyalwayshigherthanthatoftheseparated,H2,andPd10,systems.InthecaseofBSandHSsites,theminimumappearsat1.69and1.52Åabovethesurface,suggestingperhapstheexistenceofpossibleprecursorstates,especiallybecausetheminimumabovetheFSsiteisstructurallyquitedifferent,appearingat4.79Åabovethesurface.Withthisfixedgeometry,theenergyofthesystemistoohighabovetheH2+Pd10dissociationlimitby24.4,24.9,and17.3kcal/molfortheBS,HS,andFS,respectively.TheoptimizationofthepositionoftheHatomsleadstothreedifferentconfigurationswiththeHatomswellseparatedandsituatedclosetotheactivesitescorrespondingtothestartinggeometry.TheHatomsarelocatedwellwithintheclustersurfaceanditcansafelybeconcludedthattheclustermodelisabletoproperlyrepresentdissociativechemisorption.RelevantcalculatedparametersarepresentedinTable1andcomparedtothosereportedrecentlybyDongandHafner26usingperiodicslabdensityfunctionalcalculationswithinthePerdewetal.47generalizedgradientapproximation,GGA,andaplanewavebasisset.Despitethedifferentmodelsused,clustersvsslab,differentexchange-correlationfunctionals,B3LYPvsGGA,andbasissets,localatomicorbitalsvsdelocalizedplanewaves,theresultsreportedinTable1havestrongsimilarities.Bothcalculationspredictthatthedissociativechemisorptionoccursinallsites,thatfinalstructureontheBSisthelessfavored,andthatthefinalstructureswithHnearFSandHSareenergeticallysimilar.Likewise,thehydrogen-hydrogenandhydrogen-surfacedistancesfollowthesametrend,eveniftheHatomsarecompletelyfreetomoveintheclustercalculationswhiletheirpositionabovethesurfaceintheslabmodelhassomeconstraintstopreserveperiodicity.Apointthatdeservesfurthercommentconcernsthemagnitudeofthecalculatedadsorptionenergies.TheclusterB3LYPcalculatedenergiesarelargerthattheslabGGAenergies,andthismaybeeitherduetotheuseofadifferentfunctionalortoaclusteredgeeffect.Inanycase,thiswillnotaffecttheconclusionsofthepresentworkthatarebasedonthecomparisonofdifferentsubstrateswithinthesamecomputationalapproach.Similarly,thepresentcalculatedinteractionenergiesarenotcorrectedforpossiblebasissetsuperpositionerrors,BSSE,becausethemainconclu-sionsofthisworkarebasedonqualitativetrendsand,hence,accurateinteractionenergyvaluesarenotrequired.Inaddition,therelativeenergydifferencesarelargeenoughtopreservethequalitativetrendaftercorrectingthesevaluesbymeansofthe
1820J.Phys.Chem.B,Vol.105,No.9,2001Sousaetal.
Figure2.OptimizedgeometryofthePd10(a)andCu10(b)clustermodels.ForPd10theoptimumdistancesareindicated;forCu10thelackofsymmetryleadstoalargenumberofdifferentdistancesrangingfrom2.4to2.6http://wendang.chazidian.comrgedarkspheresrepresentPdatomsandsmalllightspheresstandforCuatoms.
counterpoisemethod.NoticethattypicallytheBSSEcorrectionsinthesesystemsareoftheorderof5kcal/molonly.
TheinteractionofH2withtheCu10clustermodelfollowsatrendverydifferentthanthatreportedaboveforPd10.WhentheH2distanceisfixedattheequilibriumvalueforthegas-phasemolecule,theinteractionwiththeCu10clusterisveryweak.Itis?0.2kcal/molandappearsatdistancesthataretoofarawayfromthesurface,?5Å,tobeconsideredasaprecursorforaphysisorbedstate.Moreover,fulloptimizationofthepositionoftheHatomsleadsalwaystostablestructuresbutwiththeHatomssituatedintheclusteredge,welloutsidethesurfaceregionoftheclustermodel.Indeed,thepositionoftheHatomsisnearlyonthesurfaceplaneanddirectlyinteractingwithtwoedgeatomsoftheclusterfirstlayerat?1.7Å.ThisgeometryissimilartothatobtainedbyTrigueroetal.48forthechemisorptionofatomichydrogenonoptimizedcopperclusters.Clearly,thisresultindicatesthatnodissociativechemisorptionoccursontheCu(111)surface,ingoodagreementwiththeexperimentalfindings.27
Finally,weconsiderthefulloptimizationoftheclustermodelandoftheclustermodelwiththeinteractingHatoms.ThefinalstructuresforPd10andCu10aresurprisinglydifferent.ForPd10,theoptimizedstructureisclosetotheinitialgeometryobtainedbycuttingaclusterfromthebulk,cf.Figure2a.TheenergygainobtainedbyrelaxingcompletelyallCartesiancoordinatesofallclusteratomsisfairlysmall,?6kcal/mol,andthedistancesarechangedbyasmuchas0.1Å,affectingmainlythefirsttosecondlayersandthesecondlayerintraatomicdistances.TheC3Vsymmetryispreserved,albeitnotimposedbythecalculation.Interestingly,thefinalgeometryofthedifferentPd10-H2clusterscorrespondingtotheinteractionofH2ontheBS,FS,andHSsitesisalsoclosetotheoneobtainedbyoptimizingonlytheHatoms.Theonlynoticeablechangesappearinthemetal-metaldistancesandalmostmaintainthegeometryoptimizedforPd10.Theadsorptionenergygainduetogeometryrelaxationisverysimilartothatofthebareclusterand,asaconsequence,theEadsvaluesforthefullyoptimizedstructuresdifferfromthosereportedinTable1by0.5to1.5kcal/mol,dependingontheactivesite.ThesecalculationssuggestthatsmallPdclustersmaycloselyresemblethebulkmetalnotonlystructurallybutalsofromthechemicalandcatalyticpointofview.
ContrarytothatofPd10,thefinaloptimizedstructureofCu10iscompletelydifferentfromthatobtainedbycuttingaclusterfromthebulk.Thereareseveralarbitrarywaystodescribethegeometryofthisoptimizedcluster.Forinstance,itmaybeseenasbeingcomposedoffourlayers,eachhavingthestructureofthecorrespondingCuclusterwiththesamenumberofatoms.Thesecondlayercontainsfivemetalatomsandadoptsanearlyplanarstructureformingthreetriangles,thisispreciselytheoptimizedstructureofCu5asreportedbydifferentauthors.48,49Thethirdlayercontainsthreeatomsinatriangularshape,andthefirstandfourthcontainasingleatomontopofatriangle,thusformingtetrahedralunits.Despitethehugestructuralmodification,theenergyrelaxationisrathermodest,?21kcal/mol.BecausethefinaloptimizedgeometryofthisCu10clusterbearsnoresemblancetotheinitialstructure,theinteractionofH2withthisclusterhasnotbeenconsidered.
IV.InteractionofH2withPdCu(111)BimetallicSurfacesTheresultsobtainedfromthepresentclustermodelcalcula-tionssuggestthat,asexpected,theresponseofbimetallicsurfacestothepresenceofmolecularhydrogenisverydifferentthanthatofthesinglemetalsurfacesdescribedintheprevioussection.Becauseforsinglemetalsurfacesthepredictionsarisingfromthepresentcomputationalapproachareinagreementwithexperimentandwithpreviousavailablecalculations,itisexpectedthatthedescriptionobtainedforthebimetallicsurfaceswillbeofsimilarquality.
ForthePd4Cu6clustermodel,theinteractionofanH2moleculewiththeinternucleardistancefixedat0.742Å,asinthegasphase,alreadyresultsinaconstrainedlocalminimumthatisstableby4.4kcal/molandisplacedat1.94Åabovethesurface.ThisisatvariancewiththecorrespondingsituationpredictedbythePd10modelofPd(111)wheretheinteractionisratherendothermicandalsodifferentfromtheveryweakinteractionpredictedfortheinteractionwithCu(111).Thisresultsuggeststheexistenceofaprecursorformolecularhydrogendissociationonthisbimetallicsurfacesite.Here,thegeometryoptimizationprocedurepermitstoidentifysuchprecursorstate.Infact,enablingthepositionoftheHatomstooptimizeabovethePd4Cu6clustermodelwithnoconstraintsledtotwodifferentminima;bothclosetotheBSsite.Nootherminimawere
内容需要下载文档才能查看found,
H2InteractionwithPdCu(111)BimetallicSurfacesJ.Phys.Chem.B,Vol.105,No.9,20011821
Figure3.OptimizedgeometryofthePd4Cu6(a)andPdCu12(b)clustermodels.ForPd4Cu6theoptimumdistancesareindicated;forPdCu12thelackofsymmetryleadstoalargenumberofdifferentdistancesrangingfrom2.4to2.9Å.PdatomsarerepresentedbydarklargesphereswhereasCuatomsarerepresentedbysmalllightspheres.
althoughthegeometrysearchwasstartedfromquitealargenumberofgeometries,includingthosewiththehydrogenatomsabovetheFSandHSsites.Inthefirstminimum,thehydrogen-hydrogendistanceisonlyslightlyelongatedwithrespecttothegas-phasevalue,0.798vs0.742Å,theperpendiculardistanceoftheHatomstothesurfaceis1.87Å,andthetotalenergyislowerthatthatofthenoninteractingsystemsby5.1kcal/mol.Thesecondminimumcorrespondstothesamesitebutherethehydrogen-hydrogendistanceismuchlargerthatinthepreviouscase,2.20Å,andthehydrogen-surfacedistancebecomes1.23Å.Inthiscase,thehydrogen-hydrogendistanceisthreetimestheinternucleardistanceforthegas-phasemoleculeandtheHatomsareclosertothesurface.Therefore,thesecondminimumcorrespondstoadissociativechemisorptionprocess.However,thetotalenergyofthisminimumisslightlyabove,3.7kcal/mol,thatcorrespondingtothenoninteractingsystems.Theabsolutevaluesofthechemisorptionenergiesmaybesomehowaffectedbytheclustersize,butitisveryunlikelythatchoosingalargermodelwillchangetheoveralldescriptionoftheprocess.Anindirectproofthatthisispreciselythecasecanbeobtainedbyallowingthegeometryofthewholesystemtorelax.ThefinalgeometryofPd4Cu6,Figure3a,isnotverydifferentfromtheonechosenasmodelwiththedistancetakenfromthePd40Cu60alloy.30Theenergyrecoveredbyallowingthesurfaceclustermodeltorelaxis?18kcal/mol,largerthanthatreportedaboveforPd10.Thisdifferencereflectsthefactthatsomeofthemetal-metaldistancesintheoptimizedgeometryofthebimetallicclusterarequitechangedwithrespecttotheinitialvalue.Thisfinalgeometryisalmostunchangeduponinteractionwithmolecularhydrogen.Thetwominimafoundforthefrozensubstratearealsopresentinthefinaltotallyrelaxedsurfaceclustermodel.However,theinteractionenergyofmolecularhydrogencalculatedwithrespecttotherelaxedsurfaceappearstobechangedby+0.9and-0.5kcal/molonlyforthephysisorbedprecursoranddissociativelychemisorbedstructures,respectively.Therefore,thereisnofurthersubstraterelaxationinducedbythepresenceofmolecularhydrogeninthesurfaceoftheoptimizedPd4Cu6cluster.
TheinteractionofmolecularhydrogenwiththePdCu12clustermodelhaslittleresemblancewiththeonedescribedaboveforPd4Cu6.Freezingthehydrogen-hydrogendistanceat0.742Åresultsinaconstrainedminimumquitefarawayfromthesurface,2.47Å,and,consequentlywithaveryweakinteractionenergy,?1kcal/mol,withrespecttothenoninteractingsystems.Thelargedistancetothesurfaceandthesmallvalueoftheinteractingenergypointtowardthenonexistenceofanyphys-isorbedspecies.Inaddition,releasingtheconstraintsonthe
positionofthehydrogenatomsabovethesurfacedoesalwaysresultinafinalgeometrywiththehydrogenatomswelloutsidetheclustermodelandinteractingwithtwoedgeCuatoms.ThissituationiscomparabletothatdescribedfortheCu10modelofCu(111)andindicatesthat,contrarytoPd4Cu6,thesinglesurfacePdatomofthePdCu12isnotabletochangethepropertiesofthelargecomponentinthealloy.Thisisameaningfulpointbecauseitshowstheimportanceoftheelectronicorligandeffects.ToclosethediscussionaboutthePdCu12clustermodelwecommentonthestructureobtainedwhenthegeometryoptimizationoftheclustermodeliscarriedoutwithnorestrictions.AsinthecaseofCu10,thefinalgeometryofPdCu12islargelydistortedfromtheinitialstructure,Figure3b.Themaindistortioncorrespondstoamotionoftheatomsintheclusterthirdlayer,resultinginaratherflatcluster.However,thePdatompreservesitspositionandthecorrespondingsurfaceisreminiscenttothatoftheoriginalcluster.Asexpected,thereactivitytowardmolecularhydrogenisnotchangedandtheonlystablestructurescorrespondtosituationswiththehydrogenatomsintheclusteredge.
Tosummarize,resultsinthissectionshowthatthetwobimetallicsurfaceclustermodelsrepresentativeofdifferentcompositionshavearatherdifferentchemicalreactivitytowardmolecularhydrogen.AveryimportantpointisthatpresentresultssuggestthatasinglePdatomonthesurfaceofaPdCualloyisabletotrapandtodissociatemolecularhydrogen,ingoodagreementwithexperimentalfindings.28However,toexhibitthisparticularchemicalreactivity,thissinglesurfacePdatomneedsaproperelectronicenvironmentthatcanbeprovidedbyotherPdatomsinthesecondmetallayerbutthatisnotatallprovidedbyCuatoms.Inotherwords,itseemsthatthereactivityofthedifferentPdCualloystowardH2dissociationisenhancedbythepresenceofPdmicroclustersinthealloy.V.Conclusions
InthisworkadensityfunctionalclustermodelapproachhasbeenappliedtothestudyoftheinteractionofmolecularhydrogenwithtwodifferentclustermodelsofthePdCu(111)surface.BothmodelscorrespondtoadifferentformalalloycompositionbutwithasinglePdatominthesurface.Forcomparison,theinteractionofH2withPd(111)andCu(111)hasbeenstudiedusingthesametheoreticaltechniques.Thepresentcomputationalapproachproperlypredictsthedissocia-tivecharacteroftheH2chemisorptiononPd(111)andthelowreactivityofCu(111)towardthesamemolecule.Moreover,
内容需要下载文档才能查看the
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 应用CBCT_EPID研究鼻咽癌_省略_种体位固定方式摆位误差的比较分析_陆维
- 按摩太冲穴位的作用
- 中小学校教师传染病预防与突发公共卫生事件应对手册
- 老人健康饮食 防治便秘的好方法
- 青少年近视 2种态度不要有
- 近视矫正
- 脓毒症炎症反应及乌司他丁的抗炎作用
- 脓毒症患者左心室舒缩功能的变化及B型钠尿肽诊断价值的探讨
- 腰背痛时各脑区间的功能连接变换
- 重症脓毒症患者肱动脉内皮功能变化及对预后的影响
- 下肢深静脉血栓治疗哪家医院好
- 便秘排便
- 巧用3M弹力绷带加透明敷贴固定胃管
- 轮状病毒感染性脓毒症患儿血清降钙素原、白细胞介素-6、肿瘤坏死因子-α水平变化的意义
- 增高
- (10)杨秉辉:癌症是可以预防的
- 创伤脓毒症患者血浆中IL-12p70、TNF-α、IL-1b、IL-6、IL-8、IL-10的变化及其意义
- 哪类人验光时必须要散瞳
- 八卦象数疗法
- 静动脉二氧化碳分压差联合上腔静脉血氧饱和度指导休克患者复苏
- 预防肺结核
- 在体短距离细小神经记录复合神经动作电位的最佳方法
- 肿瘤坏死因子-α在脓毒症大鼠心肌损害中的表达及作用机制
- 长寿
- 近视眼镜 有色并非更“养目”
- 下肢深静脉血栓严重吗
- 中医眼复习题
- 持续性高容量血液滤过治疗脓毒症合并多器官功能障碍综合征的效果观察
- 生活应失眠,而改变。
- 按摩神庭穴的作用
网友关注视频
- 化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 外研版英语三起6年级下册(14版)Module3 Unit1
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
- 飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 人教版二年级下册数学
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 沪教版八年级下册数学练习册一次函数复习题B组(P11)
- 冀教版小学英语四年级下册Lesson2授课视频
- 苏科版数学七年级下册7.2《探索平行线的性质》
- 北师大版数学四年级下册第三单元第四节街心广场
- 二年级下册数学第一课
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
- 六年级英语下册上海牛津版教材讲解 U1单词
- 冀教版英语五年级下册第二课课程解读
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 二年级下册数学第三课 搭一搭⚖⚖
- 冀教版小学数学二年级下册1
- 沪教版八年级下册数学练习册21.3(3)分式方程P17
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理