双金属表面相互作用机理
上传者:黎芳|上传时间:2015-04-25|密次下载
双金属表面相互作用机理
J.Phys.Chem.B2001,105,1817-18221817
TheoreticalStudyoftheInteractionofMolecularHydrogenwithPdCu(111)BimetallicSurfaces
CarmenSousa,VirineyaBertin,andFrancescIllas*
DepartamentdeQu?´micaF?´sicaiCentreEspecialdeRecercaenQu?´micaTeo`rica,UniVersitatdeBarcelonaC/Mart?´iFranque`s1,08028Barcelona,SpainReceiVed:September18,2000;InFinalForm:NoVember27,2000
AdensityfunctionalclustermodelapproachhasbeenappliedtothestudyoftheinteractionofmolecularhydrogenwithtwodifferentclustermodelsofthePdCu(111)surfacecorrespondingtoadifferentformalalloycompositionbothhavingasinglePdatominthesurface.Despitethesimilarsurfacemorphologyofthetwobimetallicclusters,theyexhibitaratherdifferentreactivitytowardmolecularhydrogen.ThecoordinationofthesurfacePdatomtootherPdatomsinthesecondlayerappearstobenecessaryforthisatombeabletotrapanddissociatemolecularhydrogenwithaverylowenergycost,thusbeingapotentialactivesiteforcatalysis.Thisimportantresultpointsoutthatelectronic,orligand,effectsdoalsoplayanimportantroleintheactivityofthePdCu(111)surfacesitestowardmolecularhydrogen.
I.Introduction
Bimetallicsystemsconstituteabroadclassofselectivecatalyststhatattempttoexploitandcombinethedifferentchemicalpropertiesofvariousmetalstowardagivenchemicalreaction.1-3Inparticular,bimetallicsystemshavebeenlongusedforhydrocarbonreforminginthepetrochemicalindustry.4-6Therequirementforefficientchemicalprocessesderivedfromthehugedemandinthehydrocarbonmarkettriggeredaratherlargenumberoffundamentalstudiesaimedtobetterunderstandtheparticularitiesofthesecatalyticsystems.Thedifferentactivityofbimetallicsystemswithrespecttothepuremetalshasbeenoftenrationalizedintermsoftwomaineffects;6-10thoseareusuallytermedasstructuralandelectronicorligandeffects,respectively.Thestructuraleffectreferstothepossiblechangesinthetypeanddistributionofactivesitesinanalloywithrespecttoasinglecomponent,whereastheelectroniceffectsareduetoprofoundchangesintheelectronicstructureofametalcausedbythepresenceofthesecondcomponent.Theconceptsofstructuralandelectroniceffectshavebeenveryusefultojustifythesuperiorcatalyticactivityofbimetallicsystems.However,fromamicroscopicpointofviewonemaywonderwhetherthedistinctionbetweenthetwoeffectsisstraightforwardorifitrequiresadetailedanalysisoftheelectronicstructureofeachparticularalloyandofitsreactivitytowardprobemolecules.LetusconsiderasingleAatominasimpleABbinarysystem.Fromapurelystructuralpointofview,theactivityofthissurfaceatomwillbethesame,independentofitscoordinationtootheratomsinthesecondlayer.However,itispossiblethatthisAsiteexhibitsadifferentreactivitydependingonitscoordinationinthesecondlayertoonlyAatomsoralsotoBatoms.
Amidtheseveralbinarysystemsthatareoftenusedinbasicandpracticalresearch,PdCuprovidesanexampleofaratherversatilecatalyticsystem.IthasbeenshownthatPdCucatalystsareabletosimultaneouslyoxidizeCOandtoreduceNO,11thusbeingofpracticalinterestintheautomotiveindustry.Likewise,PdCuisefficientinalkeneoxidation,12ethanoldecomposition,13
*Correspondingauthor.E-mail:f.illas@qf.ub.esandinseveralhydrogenationprocesses,e.g.,inCO,benzene,andtoluenehydrogenation.13-16Becauseofthesepeculiarities,PdCualloyshavealsobeeninvestigatedtheoretically.ThenatureoftheheterometallicbondinthesebinarysystemshasbeenstudiedbyFerna´ndez-Garc?´aetal.17usingaclustermodelapproachandfirstprinciplesdensityfunctionalcalculationsincludinganenergypartitioninganalysisbasedonthecon-strainedspaceorbitalvariation,CSOV,method.18-20ThepictureoftheelectronicstructurearisingfromthesestudiesisrathercomplexandinvolveschargetransferfromCu(4sp)orbitalstothePd(5sp)ones,Pd(4d)fPd(5sp)rehybridization,andalmostnegligiblechangesintheCu(3d)population.Indeed,itwasfoundthatsurfacePdatomscarryonasmallbutnoticeablenegativecharge.ThisfactisnotincontradictionwithapositiveshiftofthePdcore-levelsthatarisespreciselyfromthelargePd(4d)fPd(5sp)rehybridizationthatmoveselectrondensityawayfromthecoreregion.
Thechangesintheelectronicstructuredescribedabovehaveamarkedinfluenceinthechemicalreactivityofthesebinaryalloys.Foralargenumberofalloys,RodriguezandGoodman21werethefirsttoshowastrongcorrelationbetweenthecore-levelshiftsonthealloyinducedbyCOchemisorptionandtheCOdesorptiontemperature.Thiscorrelationwaslaterinterpretedasoriginatedbytheextentofπ-back-donationand,hence,attributedtothepositionofthemetaldband.22SubsequentclustermodelcalculationshavealsofoundanalmostlinearcorrelationbetweenthecalculatedinteractionenergiesandthePdcore-levelshifts.23However,theCSOVanalysisshowsthatthiscorrelationcannotbeexplainedintermsofback-donationonly.ThecomplexbehaviorofthebimetallicsystemsisfurtherillustratedbytheveryrecentstudyofLo´pezandNorskøv24concerningtheinteractionofCOonseveralPdCualloys.TheseauthorsshowthateventheinteractionofCOwiththeinactivecomponentofthealloyisenhancedwithrespecttothepuresystem.
AdditionalinformationaboutthereactivityofPdCubimetallicsurfacesrequirestheuseofaprobemoleculethatcouldexperiencesomechemicalreactionwithbreakingandforming
10.1021/jp003349hCCC:$20.00©2001AmericanChemicalSociety
PublishedonWeb02/08/2001
1818J.Phys.Chem.B,Vol.105,No.9,2001
bonds.MolecularhydrogenisnodoubtagoodcandidatebecauseH2dissociationisoneoftheimportantelementaryreactionsrelevanttovariouscatalyzedprocesses.1-4InthecaseofPdCutheH2dissociationisespeciallyimportantbecausethisbinarysystemiscurrentlyusedinhydrogenationprocesses.Furthermore,H2dissociatesonPdsurfaceswithalmostnoactivationenergy,25,26whereasitisratherunreactivetowardCusurfaces.Infact,ithasbeenshownthatH2doesnotdissociateonCu(111)atlowtemperatures.27Ontheotherhand,H2dissociatesonPd0.7Cu0.3surfaces,andtheexperimentalresultssuggestthatevensingleisolatedPdatomsonthesurfacesurroundedbyCuatomsareabletotrapandpossiblydissociateH2.28FromtheseexperimentsitissuggestedthatthestructuralfactorisimportantfortheinteractionofCOonPd0.7Cu0.3surfacesbutnotforH2dissociation.ThisconclusionfollowsfromthefactthatH2dissociationonPdCudoesnotrequirehavingthree-fold-likesitesinthePdCusurfacethataresimilartothoseofPd(111).ThisisbecausesinglePdatomsonPdCuarealsoreactiveforH2dissociation.28However,itisclearthattherearedifferentpossibilitiesforthecoordinationofPdatomsatthePdCu(111)surface,i.e.,withorwithoutPdatomsonthesecondlayer,andonemaywonderwhetherthisdifferencecanaffectthereactivityofthisactivesite.ThedifferentreactivityofsinglePdatomsonPdCusurfacestowardH2dissociationcanbeinvestigatedwiththehelpofcomputationalmodels.FollowingthestudyoftheinteractionofCOandNOonPdCu(111)byIllasetal.,23inthisworkwepresentatheoreticalmodelstudyoftheinteractionofmolecularhydrogenwithPdCusurfacesofdifferentcomposition.FromthisstudyitclearlyappearsthatevenifPdsingleatomsonthePdCusurfaceareabletotrapanddissociatemolecularhydrogen,ingoodagreementwithexperimentalobservations,theenvironmentofsuchactivesiteplaysafundamentalrole.
II.SurfaceClusterModelsandComputationalDetailsClustermodelshavebeenemployedtosimulatethe(111)surfaceofsubstitutionallydisorderedface-centeredcubic,fcc,alloysofformalPd40Cu60andPd8Cu92compositions.Thechoiceofthesedisorderedalloyscomesfromthefactthatpreparationmethodsofthesecatalystsfavorpreciselytheappearanceofdisorderedphases.15,29TwodifferentbutstructurallysimilaractivesitesforH2dissociationonthesePdCu(111)clustermodelshavebeenconsideredandthereactivitytowardH2comparedtothatexhibitedbythepuremetal,PdorCu,low-indexsurfaces.Bothsitesinvolveasingle-surfacePdatombutintwodifferentelectronicenvironments.Inthefirstcase,theactivesiteisrepresentedbyaPdCu12clustermodel,orPd1(1,0,0)Cu12(6,3,3)toindicatethenumberofatomsineachclusterlayer,wherethePdsurfaceatomiscompletelysur-roundedbyCuatoms.Withthismodel,onepretendstomimicaCu-richalloysuchasPd8Cu92.Inthesecondcase,thePdthreenearestneighborCuatomsinthesecondlayeraresubstitutedbyPdatoms,givingrisetothePd4Cu6clustermodel,orPd4(1,3)Cu6(6,0),whichisrepresentativeofthePd40Cu60alloys.NoticethatthisPd4Cu6clustermayalsoberegardedasatetrahedralPd4unitembeddedinCuatoms.Themetal-metaldistanceinthePdCu12andPd4Cu6clustersischosenfromthecorrespondingmeasuredvaluesforPd8Cu92andPd40Cu60alloys.22Hence,metal-metaldistancesof2.58and2.63ÅhavebeenusedforPdCu12andPd4Cu6,respectively.NoticethatthesePdCu12andPd4Cu6clustermodelshavealsobeenusedinprevioustheoreticalstudies.17,23TocomparethereactivityofthePdCualloymodelstothatofthepurecomponents,Pd10(7,3)andCu10(7,3)clustermodelshavebeenusedtorepresentthe
Sousaetal.
Figure1.SchematicrepresentationoftheBS,FS,andHSactivesitesconsideredforH2dissociativechemisorption.TheM10clustermodeldepictedinthefigurecaneitherrepresentPd10,Cu10,Pd4Cu6,orthetwofirstlayersofthePdCu12.Inthetwoformercases,allatomsareequal.InPd4Cu6,thefirstlayercentralatomandthoseonthesecondlayerarePdandthesixremainingatomsonthefirstlayerareCuand,finally,inPdCu12thefirstlayercentralatomisPdandallremainingatomsareCu.
Pd(111)andCu(111)surfaceswithmetal-metaldistancesfixedat2.75and2.56Åasinthebulk.31Theclustergeometryiseitherkeptfrozenatthegeometrydescribedaboveorfullyoptimizedfollowingtheproceduredescribedbelow.
TheinteractionofmolecularhydrogenwiththedifferentsurfaceclustermodelshasbeenstudiedbyfirstprinciplesdensityfunctionalcalculationsthatusethehybridB3LYPexchange-correlationfunctional32,33asimplementedintheGaussian98suiteofprograms.34Weusetherelativisticsmall-coreeffectivecorepotentials,ECP,derivedbyHayandWadt.35TheseECPsleaveexplicitlythe3s,3p,3d,and4selectronsofCuandthe4s,4p,4delectronsofPd.ItiscustomarytorefertotheseECPsasLANL2.Thestandarddouble-??basissetalsoreportedbyHayandWadt,35anddenotedasusualasLANL2DZ,wasusedtodescribetheelectrondensityofthevalenceelectronsofCuandPd,whereastheelectrondensityofthehydrogenatomswasdescribedwithastandard6-31G**basisset.36
BecauseitislikelythatH2willdissociateonsomeofthesurfaceclustermodelsusedinthepresentwork,astep-by-stepoptimizationgeometrystrategyhasbeenusedtobetterunder-standtheenergeticsofthedissociativechemisorptionofH2withthesebinaryalloys.Inafirststep,ageometryoptimizationfortheperpendiculardistanceoftheH2centerofmasstothesurfaceiscarriedoutmaintainingH2atitsequilibriumgeometry,0.742Å,andparalleltothesurfacewiththeclustergeometryfixedatthebulkvalues.TheH2moleculeisplacedabovethesurfacewiththeHatomspointingeachtowardonebridgesite,BS,onefccsite,FS,oronehcpsite,HS,surfacesite.(cf.Figure1).AperpendicularapproachoftheH2moleculedirectlyaboveasurfaceatom,a-topsite,isalsopossible,althoughthisisgenerallyunfavored.Ultimately,themoleculetiltsandtakesanuclearconfigurationwiththemolecularaxisparalleltothesurface.37Therefore,thisinitialperpendicularapproachhasnotbeenconsidered.ThegeometrysearchstartingfromtheBS,FS,andHSwithafixedinternucleardistanceforH2attemptstofindpossiblephysisorbedstates.
Hereitisworthpointingoutthatphysisorptionenergiesareintherangeofweakinteractionswherethecurrent
内容需要下载文档才能查看exchange-
H2InteractionwithPdCu(111)BimetallicSurfaces
correlationfunctionalshavedifficulties.38-40Nevertheless,themaingoalofthepresentapproachisnotadetaileddescriptionofphysisorption.ThestrategyfollowedinthisworkpermitsustoobtainaroughestimateoftheenergygainorcosttoadsorbundistortedH2onthevarioussurfaces.Inasecondstep,startingfromeachoneoftheconformationsabove-describedthepositionofeachHatomisallowedtovarywithoutanyfurtherconstraint.ThissecondgeometryoptimizationprovidesinformationaboutthedissociativechemisorptionofH2onthevarioussurfaces.Again,themaininterestisintheenergyprofileandfinalstructure.InsomecasesthefinalgeometrywillcorrespondtowellseparatedHatomsplacedabovethesurfacemodelandquitefarfromtheclusteredge.ThiswillbeinterpretedasthefingerprintofH2dissociation.However,inothercasesthefinalgeometrywillalsocorrespondtoseparateHatomsbutinteract-ingwiththeclusteredge.ThisfinalstructurerevealslimitationsoftheclustermodelbutdoesalsoindicatethatH2willnotdissociateintheregularsitesofthatsurface.Finally,inathirdstep,thegeometryofthewholesystemisallowedtovarywithoutanyspecificconstraint.ThisfinalsteppermitstocheckthestabilityoftheclustermodelswithrespecttodistortionandalsotoinvestigatetheeffectofH2dissociativechemisorptionontheoptimizedstructureofthenakedcluster.Thecomparisonoftheenergyprofileobtainedwiththerigidandoptimizedclusterwillalsoprovideusefulinformationaboutsimilaritiesanddifferencesbetweenthereactivityofalloysextendedsurfacesandthatofsmallbimetallicparticlesthatareoftenusedascatalysts.
Itisworthpointingoutthatwiththeoptimizationgeometrystrategyjustdescribed,onedoesnotpretendtofindallthepossiblelocalminimaoftheseclustermodels.Becausethefinaloptimizationiscarriedoutwithnoconstraintsandwithnosymmetryatall,itislikelythattheminimizationalgorithmwillreachtheenergyminimuminthepotentialenergyhypersurfacethatisclosesttothestartinggeometry.
Beforeclosingthissectionitisworthpointingoutthatthepresentcalculationshaveallbeencarriedoutbydeliberatelychoosingasingledclosed-shellelectronicstructureforthedifferentclustermodels.Atfirstsight,thischoicemayseeminadequatebecauseweareconsideringadissociationprocessthat,inprinciple,leadstoanopen-shellelectronicstructure.However,wemustrecallthatthedissociationprocesstakesplaceaboveametalsurfaceandthatmetal-hydrogenbondsareformedwhilethehydrogen-hydrogenbondbreaks.Noticethatonlythefinalstructuresareofinterestandthatnoattempthasbeenmadetolocatethepossibletransitionstatescorrespondingtodissociativechemisorption.Theuseofaclosed-shellelec-tronicstructuretolocatethetransitionstatemaybemorequestionable,althoughthisisalsoacommonpracticeinperiodicdensityfunctionalcalculations.26Withrespecttothemetalclustermodelsitiswell-knownthat,althoughPdandCuarenonmagneticmetals,smallPdn41-43andCun44clustersdonotnecessarilyhaveanonmagneticgroundstate.Panasetal.45haveproposedthatcalculatedchemisorptionenergiesthatarestablewithrespecttotheclustersizecanbeobtainedbychoosingahigherspinstatefortheclustermodel.However,Ricartetal.46haveshownthatthechoiceoftheelectronicstatedoesnotlargelyaffectthebasicbondingmechanism.Becausethemodelsusedinthisworkattempttosimulateextendedalloysthatdonotpossessnetmagneticmoments,thechoiceofaclosed-shellelectronicstructureconstitutesthenaturalreference.ThischoiceisalwayspossibleforanynumberofPdatomsintheclusterbutrequirestoincludeanevennumberofCuatomsintheCunclustermodel.
J.Phys.Chem.B,Vol.105,No.9,20011819
TABLEtheFinal1:ConfigurationComparisonofofHClusterandPeriodicResultsfor2onPd(111)a⊥
BSFS
HScluster
slab26clusterslab26clusterslab26dH-H(Å)2.882.792.872.792.942.79d⊥(Å)
0.961.010.760.840.790.84Eads(kcal/mol)14.57.618.011.519.410.4orderofstab.
3
3
2
1
1
2
a
ResultsaregivenfortheH-Hdistance,dH-H,theH-surfacedistance,d⊥,andtheinteractionenergy,Eads,withrespecttothenoninteractingH2andsurfacemodel.Theorderofstabilityofthedifferentconformationsisgiveninthelastrowofthetable.
III.InteractionofH2withPd(111)andCu(111)SurfacesTheinteractionofH2withthePd10andCu10clustermodelspermitstotesttheadequacyofthepresentcomputationalapproachbecausethosesystemshavebeenstudiedextensivelybothfromexperimentandtheoreticalpointsofview.25TheapproachofH2withafixedgeometryabovethePd10BS,FS,andHSsitesleadsalwaystoaminimumonthisparticularsectionofthepotentialenergysurfacebutwithenergyalwayshigherthanthatoftheseparated,H2,andPd10,systems.InthecaseofBSandHSsites,theminimumappearsat1.69and1.52Åabovethesurface,suggestingperhapstheexistenceofpossibleprecursorstates,especiallybecausetheminimumabovetheFSsiteisstructurallyquitedifferent,appearingat4.79Åabovethesurface.Withthisfixedgeometry,theenergyofthesystemistoohighabovetheH2+Pd10dissociationlimitby24.4,24.9,and17.3kcal/molfortheBS,HS,andFS,respectively.TheoptimizationofthepositionoftheHatomsleadstothreedifferentconfigurationswiththeHatomswellseparatedandsituatedclosetotheactivesitescorrespondingtothestartinggeometry.TheHatomsarelocatedwellwithintheclustersurfaceanditcansafelybeconcludedthattheclustermodelisabletoproperlyrepresentdissociativechemisorption.RelevantcalculatedparametersarepresentedinTable1andcomparedtothosereportedrecentlybyDongandHafner26usingperiodicslabdensityfunctionalcalculationswithinthePerdewetal.47generalizedgradientapproximation,GGA,andaplanewavebasisset.Despitethedifferentmodelsused,clustersvsslab,differentexchange-correlationfunctionals,B3LYPvsGGA,andbasissets,localatomicorbitalsvsdelocalizedplanewaves,theresultsreportedinTable1havestrongsimilarities.Bothcalculationspredictthatthedissociativechemisorptionoccursinallsites,thatfinalstructureontheBSisthelessfavored,andthatthefinalstructureswithHnearFSandHSareenergeticallysimilar.Likewise,thehydrogen-hydrogenandhydrogen-surfacedistancesfollowthesametrend,eveniftheHatomsarecompletelyfreetomoveintheclustercalculationswhiletheirpositionabovethesurfaceintheslabmodelhassomeconstraintstopreserveperiodicity.Apointthatdeservesfurthercommentconcernsthemagnitudeofthecalculatedadsorptionenergies.TheclusterB3LYPcalculatedenergiesarelargerthattheslabGGAenergies,andthismaybeeitherduetotheuseofadifferentfunctionalortoaclusteredgeeffect.Inanycase,thiswillnotaffecttheconclusionsofthepresentworkthatarebasedonthecomparisonofdifferentsubstrateswithinthesamecomputationalapproach.Similarly,thepresentcalculatedinteractionenergiesarenotcorrectedforpossiblebasissetsuperpositionerrors,BSSE,becausethemainconclu-sionsofthisworkarebasedonqualitativetrendsand,hence,accurateinteractionenergyvaluesarenotrequired.Inaddition,therelativeenergydifferencesarelargeenoughtopreservethequalitativetrendaftercorrectingthesevaluesbymeansofthe
1820J.Phys.Chem.B,Vol.105,No.9,2001Sousaetal.
Figure2.OptimizedgeometryofthePd10(a)andCu10(b)clustermodels.ForPd10theoptimumdistancesareindicated;forCu10thelackofsymmetryleadstoalargenumberofdifferentdistancesrangingfrom2.4to2.6http://wendang.chazidian.comrgedarkspheresrepresentPdatomsandsmalllightspheresstandforCuatoms.
counterpoisemethod.NoticethattypicallytheBSSEcorrectionsinthesesystemsareoftheorderof5kcal/molonly.
TheinteractionofH2withtheCu10clustermodelfollowsatrendverydifferentthanthatreportedaboveforPd10.WhentheH2distanceisfixedattheequilibriumvalueforthegas-phasemolecule,theinteractionwiththeCu10clusterisveryweak.Itis?0.2kcal/molandappearsatdistancesthataretoofarawayfromthesurface,?5Å,tobeconsideredasaprecursorforaphysisorbedstate.Moreover,fulloptimizationofthepositionoftheHatomsleadsalwaystostablestructuresbutwiththeHatomssituatedintheclusteredge,welloutsidethesurfaceregionoftheclustermodel.Indeed,thepositionoftheHatomsisnearlyonthesurfaceplaneanddirectlyinteractingwithtwoedgeatomsoftheclusterfirstlayerat?1.7Å.ThisgeometryissimilartothatobtainedbyTrigueroetal.48forthechemisorptionofatomichydrogenonoptimizedcopperclusters.Clearly,thisresultindicatesthatnodissociativechemisorptionoccursontheCu(111)surface,ingoodagreementwiththeexperimentalfindings.27
Finally,weconsiderthefulloptimizationoftheclustermodelandoftheclustermodelwiththeinteractingHatoms.ThefinalstructuresforPd10andCu10aresurprisinglydifferent.ForPd10,theoptimizedstructureisclosetotheinitialgeometryobtainedbycuttingaclusterfromthebulk,cf.Figure2a.TheenergygainobtainedbyrelaxingcompletelyallCartesiancoordinatesofallclusteratomsisfairlysmall,?6kcal/mol,andthedistancesarechangedbyasmuchas0.1Å,affectingmainlythefirsttosecondlayersandthesecondlayerintraatomicdistances.TheC3Vsymmetryispreserved,albeitnotimposedbythecalculation.Interestingly,thefinalgeometryofthedifferentPd10-H2clusterscorrespondingtotheinteractionofH2ontheBS,FS,andHSsitesisalsoclosetotheoneobtainedbyoptimizingonlytheHatoms.Theonlynoticeablechangesappearinthemetal-metaldistancesandalmostmaintainthegeometryoptimizedforPd10.Theadsorptionenergygainduetogeometryrelaxationisverysimilartothatofthebareclusterand,asaconsequence,theEadsvaluesforthefullyoptimizedstructuresdifferfromthosereportedinTable1by0.5to1.5kcal/mol,dependingontheactivesite.ThesecalculationssuggestthatsmallPdclustersmaycloselyresemblethebulkmetalnotonlystructurallybutalsofromthechemicalandcatalyticpointofview.
ContrarytothatofPd10,thefinaloptimizedstructureofCu10iscompletelydifferentfromthatobtainedbycuttingaclusterfromthebulk.Thereareseveralarbitrarywaystodescribethegeometryofthisoptimizedcluster.Forinstance,itmaybeseenasbeingcomposedoffourlayers,eachhavingthestructureofthecorrespondingCuclusterwiththesamenumberofatoms.Thesecondlayercontainsfivemetalatomsandadoptsanearlyplanarstructureformingthreetriangles,thisispreciselytheoptimizedstructureofCu5asreportedbydifferentauthors.48,49Thethirdlayercontainsthreeatomsinatriangularshape,andthefirstandfourthcontainasingleatomontopofatriangle,thusformingtetrahedralunits.Despitethehugestructuralmodification,theenergyrelaxationisrathermodest,?21kcal/mol.BecausethefinaloptimizedgeometryofthisCu10clusterbearsnoresemblancetotheinitialstructure,theinteractionofH2withthisclusterhasnotbeenconsidered.
IV.InteractionofH2withPdCu(111)BimetallicSurfacesTheresultsobtainedfromthepresentclustermodelcalcula-tionssuggestthat,asexpected,theresponseofbimetallicsurfacestothepresenceofmolecularhydrogenisverydifferentthanthatofthesinglemetalsurfacesdescribedintheprevioussection.Becauseforsinglemetalsurfacesthepredictionsarisingfromthepresentcomputationalapproachareinagreementwithexperimentandwithpreviousavailablecalculations,itisexpectedthatthedescriptionobtainedforthebimetallicsurfaceswillbeofsimilarquality.
ForthePd4Cu6clustermodel,theinteractionofanH2moleculewiththeinternucleardistancefixedat0.742Å,asinthegasphase,alreadyresultsinaconstrainedlocalminimumthatisstableby4.4kcal/molandisplacedat1.94Åabovethesurface.ThisisatvariancewiththecorrespondingsituationpredictedbythePd10modelofPd(111)wheretheinteractionisratherendothermicandalsodifferentfromtheveryweakinteractionpredictedfortheinteractionwithCu(111).Thisresultsuggeststheexistenceofaprecursorformolecularhydrogendissociationonthisbimetallicsurfacesite.Here,thegeometryoptimizationprocedurepermitstoidentifysuchprecursorstate.Infact,enablingthepositionoftheHatomstooptimizeabovethePd4Cu6clustermodelwithnoconstraintsledtotwodifferentminima;bothclosetotheBSsite.Nootherminimawere
内容需要下载文档才能查看found,
H2InteractionwithPdCu(111)BimetallicSurfacesJ.Phys.Chem.B,Vol.105,No.9,20011821
Figure3.OptimizedgeometryofthePd4Cu6(a)andPdCu12(b)clustermodels.ForPd4Cu6theoptimumdistancesareindicated;forPdCu12thelackofsymmetryleadstoalargenumberofdifferentdistancesrangingfrom2.4to2.9Å.PdatomsarerepresentedbydarklargesphereswhereasCuatomsarerepresentedbysmalllightspheres.
althoughthegeometrysearchwasstartedfromquitealargenumberofgeometries,includingthosewiththehydrogenatomsabovetheFSandHSsites.Inthefirstminimum,thehydrogen-hydrogendistanceisonlyslightlyelongatedwithrespecttothegas-phasevalue,0.798vs0.742Å,theperpendiculardistanceoftheHatomstothesurfaceis1.87Å,andthetotalenergyislowerthatthatofthenoninteractingsystemsby5.1kcal/mol.Thesecondminimumcorrespondstothesamesitebutherethehydrogen-hydrogendistanceismuchlargerthatinthepreviouscase,2.20Å,andthehydrogen-surfacedistancebecomes1.23Å.Inthiscase,thehydrogen-hydrogendistanceisthreetimestheinternucleardistanceforthegas-phasemoleculeandtheHatomsareclosertothesurface.Therefore,thesecondminimumcorrespondstoadissociativechemisorptionprocess.However,thetotalenergyofthisminimumisslightlyabove,3.7kcal/mol,thatcorrespondingtothenoninteractingsystems.Theabsolutevaluesofthechemisorptionenergiesmaybesomehowaffectedbytheclustersize,butitisveryunlikelythatchoosingalargermodelwillchangetheoveralldescriptionoftheprocess.Anindirectproofthatthisispreciselythecasecanbeobtainedbyallowingthegeometryofthewholesystemtorelax.ThefinalgeometryofPd4Cu6,Figure3a,isnotverydifferentfromtheonechosenasmodelwiththedistancetakenfromthePd40Cu60alloy.30Theenergyrecoveredbyallowingthesurfaceclustermodeltorelaxis?18kcal/mol,largerthanthatreportedaboveforPd10.Thisdifferencereflectsthefactthatsomeofthemetal-metaldistancesintheoptimizedgeometryofthebimetallicclusterarequitechangedwithrespecttotheinitialvalue.Thisfinalgeometryisalmostunchangeduponinteractionwithmolecularhydrogen.Thetwominimafoundforthefrozensubstratearealsopresentinthefinaltotallyrelaxedsurfaceclustermodel.However,theinteractionenergyofmolecularhydrogencalculatedwithrespecttotherelaxedsurfaceappearstobechangedby+0.9and-0.5kcal/molonlyforthephysisorbedprecursoranddissociativelychemisorbedstructures,respectively.Therefore,thereisnofurthersubstraterelaxationinducedbythepresenceofmolecularhydrogeninthesurfaceoftheoptimizedPd4Cu6cluster.
TheinteractionofmolecularhydrogenwiththePdCu12clustermodelhaslittleresemblancewiththeonedescribedaboveforPd4Cu6.Freezingthehydrogen-hydrogendistanceat0.742Åresultsinaconstrainedminimumquitefarawayfromthesurface,2.47Å,and,consequentlywithaveryweakinteractionenergy,?1kcal/mol,withrespecttothenoninteractingsystems.Thelargedistancetothesurfaceandthesmallvalueoftheinteractingenergypointtowardthenonexistenceofanyphys-isorbedspecies.Inaddition,releasingtheconstraintsonthe
positionofthehydrogenatomsabovethesurfacedoesalwaysresultinafinalgeometrywiththehydrogenatomswelloutsidetheclustermodelandinteractingwithtwoedgeCuatoms.ThissituationiscomparabletothatdescribedfortheCu10modelofCu(111)andindicatesthat,contrarytoPd4Cu6,thesinglesurfacePdatomofthePdCu12isnotabletochangethepropertiesofthelargecomponentinthealloy.Thisisameaningfulpointbecauseitshowstheimportanceoftheelectronicorligandeffects.ToclosethediscussionaboutthePdCu12clustermodelwecommentonthestructureobtainedwhenthegeometryoptimizationoftheclustermodeliscarriedoutwithnorestrictions.AsinthecaseofCu10,thefinalgeometryofPdCu12islargelydistortedfromtheinitialstructure,Figure3b.Themaindistortioncorrespondstoamotionoftheatomsintheclusterthirdlayer,resultinginaratherflatcluster.However,thePdatompreservesitspositionandthecorrespondingsurfaceisreminiscenttothatoftheoriginalcluster.Asexpected,thereactivitytowardmolecularhydrogenisnotchangedandtheonlystablestructurescorrespondtosituationswiththehydrogenatomsintheclusteredge.
Tosummarize,resultsinthissectionshowthatthetwobimetallicsurfaceclustermodelsrepresentativeofdifferentcompositionshavearatherdifferentchemicalreactivitytowardmolecularhydrogen.AveryimportantpointisthatpresentresultssuggestthatasinglePdatomonthesurfaceofaPdCualloyisabletotrapandtodissociatemolecularhydrogen,ingoodagreementwithexperimentalfindings.28However,toexhibitthisparticularchemicalreactivity,thissinglesurfacePdatomneedsaproperelectronicenvironmentthatcanbeprovidedbyotherPdatomsinthesecondmetallayerbutthatisnotatallprovidedbyCuatoms.Inotherwords,itseemsthatthereactivityofthedifferentPdCualloystowardH2dissociationisenhancedbythepresenceofPdmicroclustersinthealloy.V.Conclusions
InthisworkadensityfunctionalclustermodelapproachhasbeenappliedtothestudyoftheinteractionofmolecularhydrogenwithtwodifferentclustermodelsofthePdCu(111)surface.BothmodelscorrespondtoadifferentformalalloycompositionbutwithasinglePdatominthesurface.Forcomparison,theinteractionofH2withPd(111)andCu(111)hasbeenstudiedusingthesametheoreticaltechniques.Thepresentcomputationalapproachproperlypredictsthedissocia-tivecharacteroftheH2chemisorptiononPd(111)andthelowreactivityofCu(111)towardthesamemolecule.Moreover,
内容需要下载文档才能查看the
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 多线切割机切割线振动特性研究
- 人力资本、社会资本与高校毕业生就业--对高校毕业生就业影响因素的研究
- 超级电容式混合动力电动汽车控制策略探讨
- 煤矿水害的防治措施之我见
- 异形内腔曲面加工装置导轨的结构设计与优化
- 南医大生物化学习题库
- 企业产品内部追踪系统的设计与实现
- 气象学复习题(1~9章)
- 小麦喷灌机械管道安装效益分析
- 土壤肥料学重点必须复习资料
- 邹城市马铃薯生产机械化技术推广工作管窥
- 浅析农用抽水机抽水不良的原因及维修措施
- 植物检疫学法规总结
- 新时期农机有效监理路径初探
- 农机农艺结合问题研究
- 东北农业大学关于研究生公开发表学术论文的暂行规定 2014
- 县级做出农机牌证行政许可是大势所趋
- 浅谈CD6140A车床转动小滑板法加工外圆锥面
- 数控模具零件的铣夹具设计思路初探
- 《畜牧学通论》复习资料
- TLC2543在喷油器驱动控制反馈电路中的应用
- 对提高高校辅导员科研能力的思考——基于对南京农业大学37名辅导员的问卷调查
- 廊坊农机作业质量存在的问题及发展措施和建议
- 农业推广复习资料
- 论内部审计在企业管理中的地位和作用
- 如何遏制新形势下的农机事故
- 有关加强退耕还林管理提高退耕还林质量的探讨
- 呼图壁县农机化示范基地建设的几点建议
- 试论农业机械的安全使用和维护保养思路漫谈
- 浅议农机安全监理工作中的执法与服务
网友关注视频
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 冀教版小学数学二年级下册第二单元《租船问题》
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 七年级英语下册 上海牛津版 Unit3
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
- 二年级下册数学第一课
- 冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 七年级英语下册 上海牛津版 Unit5
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 外研版英语七年级下册module3 unit1第二课时
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 冀教版英语四年级下册第二课
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
- 二年级下册数学第二课
- 冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
- 河南省名校课堂七年级下册英语第一课(2020年2月10日)
- 精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
- 苏教版二年级下册数学《认识东、南、西、北》
- 北师大版数学四年级下册第三单元第四节街心广场
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 二年级下册数学第三课 搭一搭⚖⚖
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理