Laser Surface Annealing of Plasma Sprayed Coatings
上传者:安旭|上传时间:2015-04-26|密次下载
Laser Surface Annealing of Plasma Sprayed Coatings
热障涂层重熔
Journal of Surface Engineered Materials and Advanced Technology, 2012, 2, 215-220
Published Online July 2012 (http://wendang.chazidian.com/journal/jsemat)
215
Laser Surface Annealing of Plasma Sprayed Coatings
Ahmed Ibrahim*, Yue Hung
Department of Mechanical Engineering Technology, Farmingdale State College, Farmingdale, USA. Email: *Ahmed.ibrahim@farmingdale.edu
Received May 10th, 2012; revised June 13th, 2012; accepted June 20th, 2012
ABSTRACT
Laser surface annealing provides a rapid and efficient means for surface alloying and modification of ceramic materials. In this study, Alumina-13% Titania coatings were sprayed with a water-stabilized plasma spray gun. The coated surface was treated by Excimer laser having a wavelength of 248 nm and pulse duration of 24 ns. The surface structure of the treated coating was examined by field emission scanning electron microscope and X-ray diffraction (XRD). A detailed analysis of the effects of various laser parameters including laser energy density (fluence), pulse repetition rate (PRR), and number of pulses on the morphology and the microstructure of the coatings are presented.
Keywords: Laser Annealing; Plasma Sprayed Coatings; SEM; Microstructure
1. Introduction
Plasma sprayed alumina-13% titania (AT-13) coating is one of the most important coatings for many industrial applications [1-7]. They provide a dense and hard surface coating which are resistant to abrasion, corrosion, cavita- tion, oxidation and erosion and are therefore regularly used for wear resistance, electrical insulation, thermal barrier applications etc. A number of papers reported that the Al2O3-TiO2 coating containing 13 wt% of TiO2 showed the most excellent wear resistance among the AT-13 ones [3-5].
AT-13 coating is a typical ceramic coating with rela-tively high degree of porosity and the properties of these coatings, such as high temperature corrosion resistance, toughness and abrasive resistance, may thereby be re- duced. To improve these properties, various methods have been proposed, such as impregnation with polymers or ceramics, seal sintering with liquid alloys and post- laser irradiation [8,11-21]. Laser surface treatment is one novel method that has potential for eliminating porosity and producing a homogeneous surface layer. Unfortu-nately, there is a very limited research on the effect of laser irradiation on the surface morphology and micro-structural of AT-13 coatings. Previous research has shown that CW-CO2 and Nd:YAG lasers, with the ap-propriate parameters can improve the microstructural and morphological characteristics of AT-13 or Alumina coat- ings [13-15]. The formation of columnar grains was ob-served on the laser-treated zones. Chemical composition and thermal conductivity affected the way the materials
*
behaved during laser processing.
Excimer pulsed lasers are characterized by relatively short pulse duration (~25 ns), and wavelengths in the ul- tra-violet which result in very shallow treatment depths, of the order of a few hundred nanometers [15-17]. Pulsed laser irradiation can be used to melt or soften very thin surface layer of metal or ceramic that resolidifies, due to the high thermal gradients. Excimer lasers present certain distinct advantages for material processing applications in comparison to the other types of lasers. This is due to the fact that Excimer lasers operate in the ultraviolet re-gion of the spectrum at wavelengths from 190 nm to 310 nm. At these short wavelengths the reflectivity of most metals and ceramics is lower than at longer wavelengths and the absorptivity is higher [20].
In this investigation, Excimer laser was used for the surface annealing of free-standing AT-13 samples that were manufactured with a plasma spray gun. The effect of the Excimer laser annealing on the main features of the coated surface was evaluated in terms of surface modifications, microstructural and mechanical properties. A detailed parametric study was performed to investigate the effects of several parameters such as laser energy density (fluence), pulse repetition rate (PRR), number of pulses on the mechanical properties, surface morphology, and microstructure of the coatings.
2. Experimental Materials and Procedures
Free-standing AT-13 coatings were produced by a wa- ter-stabilized plasma (WSP) spray gun to obtain a thick- ness of 5 mm; Table 1 lists the spray parameters. The
Corresponding author.
Copyright © 2012 SciRes. JSEMAT
热障涂层重熔
216 Laser Surface Annealing of Plasma Sprayed Coatings
coating was sprayed on mild steel substrates. The sub- strates were grit blasted and then a thin layer of alumi-num was arc sprayed before spraying the AT-13 coating. The thin aluminum layer was dissolved using hydrochlo-ric acid so that free-standing alumina-titania plates were obtained. All specimens were mechanically polished to a mirror surface in the present study, which results in a sur- face roughness of 0.7 μm prior to laser treatment. This operation also facilitates the characterization of surface topological evolutions. The procedure consisted of suc- cessive grinding by silicon carbide papers and a final cloth polishing with a 0.25 μm diamond particle suspen-sion.
Excimer laser pulses was generated from a Lambda Physic Compex 205 system having Krypton Fluoride (KrF) as the lasing gas, resulting in a laser wavelength of 248 nm, a bandwidth of 300 pm and a pulse duration of 24 ns. Table 2 lists the laser processing parameters em-ployed in this study.
Surface morphology and microstructure of the coat-ings were investigated before and after laser treatment by optical microscopy (OM) and a LEO field emission scanning electron microscopy (SEM). Mitutoyo surface roughness and Vickers microhardness testers were used to measure the surface roughness and hardness of the treated and untreated surfaces. The Vickers hardness number (VHN) measurements were conducted under 300 gm load over 15 sec duel time.
Table 1. Spray parameters for water-stabilized plasma.
Parameter Comment WSP power 125 KW
Voltage 300 - 320 V
Amperage 400 A Spray distance 330 mm Rotation speed 90 rpm Feed rate 34 kg/h
Table 2. Laser processing parameters and surface proper-ties of the coating.
Sample
Pulse
Repetition
# of Pulses
Energy Density
Hardness (Hz) (P) (mJ/cm2) (HV)
1 50 1000 800 1897
2 25 1000 800 1456 3 10 1000 800 1504 4 50 500 800 1740 5 10 500 800 1620 6 50 1000 400 1516 7 50 2000 400 1240 8 25 1000 400 1122 9 50 500 400 1204 10
50 1000 200 1175
Copyright © 2012 SciRes. The porosity of the coatings was estimated with quan-titative image analysis on as polished and as laser treated samples. Five SEM images were analyzed using Image-J software from NIH (National Institute of Health, Bethes- da, MD, USA). The phase composition of the coatings before and after the laser treatment were determined by X-ray diffraction (XRD) using a Philips X-ray diffracto-meter (Philips APD 3520).
3. Results and Discussion
3.1. Phase Composition
The XRD profiles of the as-sprayed and laser treated coatings are illustrated in Figure 1. The analysis of the coatings indicated the presence of one distinct diffraction peak of the metastable γ-Al2O3 phase even though the starting powder was mainly α-Al2O3 phase. This is con- sistent with what was observed in earlier studies on the plasma sprayed AT-13 coatings [3-7]. The formation of metastable phase is generally attributed to the large ki-netic undercooling generated in the melt that favors nu-cleation of the metastable phase over the stable phase α-Al2O3. The microstructure evolution during rapid so-lidification depends on the interplay between undercool-ing and solidification velocity [16]. The XRD profile of the laser treated surface matched well with that of the coating as shown in Figure 1. This result indicates that a very high cooling rate was achieved with the nano-second (ns) pulsed laser, which suppressed the transformation of γ-Al2O3 to α-Al2O3.
3.2. Microstructure of As-Sprayed Coatings Figure 2 shows the typical morphology of as-sprayed
内容需要下载文档才能查看 内容需要下载文档才能查看
Figure 1. XRD of the as-sprayed and laser treated AT-13
coatings.
JSEMAT
热障涂层重熔
Laser Surface Annealing of Plasma Sprayed Coatings
217
and polished AT-13 coating. The microstructure is char-acterized by a high density of defects, e.g. inclusions and pores. The analysis of the SEM images of the cross sec-tions of as-sprayed coatings revealed a number of fea-tures typical for thermally sprayed ceramics, i.e., struc-ture lamination with lamellae aligned in the plane of the substrate and significant porosity formed predominantly in spaces between the contacting layers of the solidify- ing material, and a fine interlamellar crack network. The quality and performance of material produced by spray- based processing is significantly influenced by the poros-ity of the deposit. The presence of the porosity is gener-ally detrimental, and it reduces the strength of the mate-rial, provides cracks initiation sites, and can result in the degradation of material properties, especially at high temperature.
3.3. Effect of Laser Parameters on the Surface
Morphology
A parametric study was performed to investigate the ef- fects of several parameters such as laser energy density (fluence), pulse repetition rate (PRR), and number of pulses on the surface morphology of the coatings. The laser processing parameters are presented in Table 2. 3.3.1. Effect of Laser Energy Density (Fluence)
Laser energy showed significant effect on the surface morphology of AT-13 coatings. Figures 3(a) and (b) show the surface morphologies of AT-13 coatings irradi-ated at two different fluences, 400 mJ/cm2 and 800 mJ/cm2. The chosen pulse repetition rates were 50 Hz, and the number of pulses was 500.
A laser fluence of 400 mJ/cm2 was smaller than the threshold energy (~700 mJ/cm2) required for melting and recrystallization of the coating. However, this laser energy
Figure 2. Morphology of as-polished Al2O3 + 13% TiO2 coat-
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看ing.
Copyright © 2012 SciRes.
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看(a)
(b)
Figure 3. Effect of laser energy density on the surface mor-phology. (a) 400 mJ/cm2, 500 shots, 50 Hz; (b) 800 mJ/cm2, 500 shots, 50 Hz.
was sufficient to heat the surface and induce thermal stresses on the coating surface that led to the propagation of pre-existing cracks and the initiation of new cracks. As it was discussed in previous section, the microstructure of ceramic coating is characterized by a high density of defects, e.g. inclusions, pores, microcracks and macro-cracks. Induced microcracks within splats are frequent, especially in the brittle ceramic coatings. Laser energy can easily induces microcracks or macrocracks in these types of microstructures. As clearly seen in Figure 3(b), when the laser energy density increased from 400 to 800 mJ/cm2, the surface drastically changes to a denser JSEMAT
内容需要下载文档才能查看 内容需要下载文档才能查看
热障涂层重熔
218 Laser Surface Annealing of Plasma Sprayed Coatings
microstructure. The irradiation at high laser density caused significant changes in the surface texture. First, the po-rosity significantly decreased (from 7.1% to 1.1%) com-pared to the untreated coating. Second, the surface has been molten and re-solidified to form dense clusters and coherent dome-like columnar grains with a significant increase in surface hardness (from 1204 to 1740 Hv). The tendency of AT-13 coatings to form clusters of grains at higher fluence (800 mJ/cm2), is the most pro-nounced feature of the surface morphology. It was one of the major findings of this study.
3.3.2. Effect of Number of Laser Shots
Effect of number of laser shots on the surface morphol-ogy and hardness of AT-13 coating has been examined. When the number of laser pulses was increased at constant fluence and pulse repetition rates (800 mJ/cm2, 50 Hz) different surface morphologies were observed. As was mentioned in previous section, when the surface irradiated at fluence of 800 mJ/cm2 with 500 shots, the surface drastically changes to clusters of grains. These grains grew vertically and form columnar grains shown in Figure 4(a).
When the number of laser shots increased to 1000 shots, tightly bonded clusters grains start to separate and flatten out as shown in Figure 4(b). The color of the surface layer changed to white-gray indicating change in surface chemistry or optical properties. However, the sur- face exhibits about 9% increase in microhardness com-pared to the surface treated with 500 shots. The porosity of the laser-treated layer with 1000 shots was higher than the one treated with 500 shots (1.1% to 1.5%).
3.3.3. Effect of Pulse Repetition Rate (PRR)
Figure 5 shows the surface morphologies of AT-13 coat- ings irradiated at fluence of 800 mJ/cm2 with two differ-ent repetition rates 10 and 50 Hz. The SEM image of the surface irradiated at lower pulse repetition rate (10 Hz) shows a very fine surface layer (~300 nm) that was melted by the pulsed laser (Figure 5(a)). This melted layer exhibited smoother morphology with shine ap-pearance and significantly different from the untreated surface. As clearly seen in Figure 5(a), laser pulses in-duced self-organized cluster cracks on this layer. These cluster cracks are very fine and more tightly woven to-gether. These cluster cracks are the most pronounced fea- tures of the surface morphology irradiated at high energy and low pulse repetition rate. The porosity significantly decreased (from 7.1% to 2.2%) compared to the un-treated coating.
At higher pulse repetition rates (50 Hz), the surface drastically changes to a granular texture. The clusters of grains grew vertically and form columnar grains (
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看Figure
Copyright © 2012 SciRes.
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看(a)
(b)
Figure 4. Effect of number of shots on the surface morphol- ogy. (a) 500 shots, 800 mJ/cm22, 50 Hz; (b) 1000 shots, 800 mJ/cm, 50 Hz.
5(b)). As mentioned in previous section, this surface morphology exhibited much higher hardness than the one irradiated at 10 Hz. The porosity of the laser treated lay-ers was greatly reduced (from 7.1% to 1.1%) compared to the untreated coating. This effect is attributed to the heat accumulation in the sample at higher pulse repeti-tion rate.
These results strongly suggest that the pulse repetition rate has a significant effect on the surface morphology of AT-13 coatings.
3.4. Microstructure of the Laser Treated Layers
The use of pulsed Excimer lasers in surface processing of JSEMAT
热障涂层重熔
Laser Surface Annealing of Plasma Sprayed Coatings
219
materials relies on understanding the nature of the inter-action between the laser energy and the material. The 3.5. Mechanical Properties (Hardness)
short wavelength, (200 - 400 nm depending on the laser gas) and the short pulse duration (24 ns) mean that for most materials, the energy is absorbed in a region of the surface that is shallow (10 nm) relative to the thermal diffusion length (100 nm) in the material [15,20].
Figure 5(b)2 shows the coating layer treated at (800 mJ/cm, 50 Hz, 500 P). This layer consists of fully dense microstructure differing significantly from the surface of untreated coating. Increasing both laser energy density (fluence) and the pulse repetition rate (PRR) have signifi- cant thermal effect on the treated layer. The surface of the treated layer shows dome-shaped surface morphology due to the rounded crystal edges. The layer structure is homogeneous and the columnar grain-like structure ex-tends from the bottom to the top of the laser treated layer.
内容需要下载文档才能查看 内容需要下载文档才能查看内容需要下载文档才能查看 内容需要下载文档才能查看
(a)
(b)
Figure 5. Effect of pulse repetition on the surface morphol-ogy. (a) 10 Hz, 500 shots, 800 mJ/cm22; (b) 50 Hz, 500 shots, 800 mJ/cm.
Copyright © 2012 SciRes. Figure 6 shows the Microhardness values of the surface of laser treated and untreated AT-13 coatings. Coatings irradiated at (800 mJ/cm2, 50 Hz, 1000 P) showed a maximum hardness of 1897 HV, corresponding to a hard- ness increase of 66% compared with the untreated coat-ings. While coatings irradiated with (400 mJ/cm2, 50 Hz, 1000 P) showed a 32% increase of hardness compared with untreated coatings. These results suggest that the laser energy density (fluence) plays a major role in mo- difying the surface hardness of the coating.
When the laser energy density increased from 400 to 800 mJ/cm2, the surface drastically changes to a much denser microstructure as shown in Figure 5(b). The irra-diation at high laser density caused significant changes in the surface texture. The surface has been molten and re- solidified to form dense clusters and coherent dome-like columnar grains with a significant increase in surface hardness. Increasing the number of laser shots from 500 to 1000 at laser energy of 800 mJ/cm2 resulted in small increase (~9%) in the surface hardness whereas an in-crease of 26% obtained for the laser energy of 400 mJ/cm2 for the same laser parameters. It is important to point out that the pulse repetition rate has a similar effect on the hardness as the laser energy. At higher pulse repe-tition rates (50 Hz) the surface exhibited a higher hard-ness than the one irradiated at 10 Hz. A fluence of 200 mJ/cm2 was much lower than the threshold energy den-sity required for melting and recrystallization of the coating and only shows a slight change in the hardness of the coating.
4. Conclusions
The following conclusions can be drawn from this inves- tigation:
内容需要下载文档才能查看 内容需要下载文档才能查看
Figure 6. Microhardness values for the laser treated and untreated coatings.
JSEMAT
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 大学物理作业2014(下)
- 农学专题报告
- 资讯我国多所高校将物联网专业纳入2011年招生章程-1
- 英国留学:林肯大学介绍及申请指导
- 厦门大学网络教育2014-2015学年第二学期《投资学(本科)》课程复习题
- 英国留学:埃塞克斯大学介绍及申请指导
- 厦门大学网络教育2014-2015学年第二学期保险学复习题
- 当老师的要求
- 《黄金时代》影评:难看到世界尽头
- 英国普利茅斯大学EMBA上海学位班
- 统计复习题(最终,有答案)
- 理学硕士-分子植物科学专业
- 36计与养生+试题
- 蒿子
- 人生的金玉良言
- 大学生与商务礼仪期末论文
- 英国留学:纽卡斯尔大学介绍及申请指导
- SMBA招生简章及报名表
- 厦门大学网络教育2014-2015学年第二学期金融工程复习题
- 湖南理工职业技术学院学生参军入伍享受的优惠政策
- 不再以成绩为惟一指标 英高校录取标准呈多元化
- 学位论文写作规范
- 中国人民大学
- 《市场营销学》第二次综合练习
- 1二维动画技法习题(一)
- 英大学回应雅思新政:语言及预科同学受影响
- 实现伟大“中国梦” 中职教育任重道远
- 钢筋下料计算题答案
- 笔画书写八大规律
- 社会资本对农户参与农地整治意愿的影响研究
网友关注视频
- 化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
- 外研版英语七年级下册module3 unit2第一课时
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 冀教版小学英语四年级下册Lesson2授课视频
- 《小学数学二年级下册》第二单元测试题讲解
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 北师大版数学四年级下册第三单元第四节街心广场
- 七年级下册外研版英语M8U2reading
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
- 冀教版英语四年级下册第二课
- 《空中课堂》二年级下册 数学第一单元第1课时
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
- 30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
- 冀教版小学数学二年级下册第二单元《租船问题》
- 飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
- 苏科版数学 八年级下册 第八章第二节 可能性的大小
- 8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 沪教版八年级下册数学练习册21.3(3)分式方程P17
- 苏科版数学七年级下册7.2《探索平行线的性质》
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理