WAVELET EDGE DETECTION BASED ON A
上传者:陶大堃|上传时间:2015-04-26|密次下载
WAVELET EDGE DETECTION BASED ON A
小波变换
An improved method of image edge detection based on wavelet transform
WAVELET EDGE DETECTION BASED ON A`TROUS
A. theory of wavelet edge detection algorithm
Owing to the character of wavelet transform, its modulus maximum point is corresponding to the singular point of signal. So we can get image’s edge points by solving the modulus maximum points. For wavelet transform exist in every scale, so wavelet transform at each scale provides certain edge information, it is called multiscale edge[6]. Supposingθ (x, y) is a properly smooth 2-D signal, and satisfies equation
(6):
From the definition of gradient, at fixed scale s, if the module Ms f( x, y) gets a maximum value point in the direction of As f ( x, y) , it shows that the point (x, y) is the singular point of f * θ s(x, y); videlicet it is the singular point of f ( x, y) . Hence, the process of acquire edge points is transformed into a process of evaluate the module maximum points of wavelet transform.
B. edge detection algorithm based on a`trous
Via interpolating approximating of limited filter, a`trous do undecimated discrete wavelet transform.
Relative to other wavelet algorithms, it has three characters below[7]:
1) The requirement of space and time of calculation is rational obviously, and it’s easy to programmed realization.
2) It is isotropic on 2-D, the process of transform can be realized by filtering.
3) It is benefit to the acquirement of image’s minutia characters without sampling and
小波变换
interpolating. The concret description of a`trous is that: supposing the original image data is C (x ) , the data after filtering with scale function (x) is C (x) , so the equation W (x) =
C (x) C(x)means the information gap between image data at two different scale, namely minutia signal (wavelet plane). Actually, a`trous wavelet transform decompose input image data into several minutia signals and one background signal. The image’s minutia characters is concentrated on wavelet plane, the original image is the superposition of minutia signals and background signal. Supposing image I contains N×N pixels, it needs decompose image I at J scale, includes J = log N +1, scale s = 2 j (1≤ j ≤ J ) . Realization steps as follows:
1) Transform image to double type;
2) Calculate the size of image to ensure decompositionscale J;
3) Design a loop structure, do a`trous wavelet transform in row and column respectively, then get the magnitude and phase of wavelet coefficient;
4) Find out the modulus maximum point and mark down the position of the singular point.
5) Chaining the adjacent singular points, wipe off these undesirable points, then obtain the edge image correspond to scale s.
IV. SIMULATION AND ANALYSIS
Select the ‘cameraman’ image with Gaussian noises to be the original image. Do edge detection using traditional edge detection algorithms and a`trous method, list the edge detection results at j=1, 2, 3. The simulation result is show in Figure 2
Figure2. the effect pictures of traditional algorithms and the improved method
A. analysis of traditional edge detection operator
Robert operator: Using local differential operators to find
the edge, it has high positioning accuracy, but it is easy to lose part of the edge and do not have the ability to suppress noises.
Sobel and Prewitt operator: Both of them to do weighted smoothing of the image firstly, and then do differential operation. Therefore, they have a certain ability of noise suppression, but can not completely rule out the false test results appear in the edge.
Prone to appear multi-pixel edge, making the detection accuracy decreased Log operator: Firstly do image filtering with a Gaussian function, and then do Laplacian transform with filtered image, consider the point correspond to zero is the boundary
point. It may smooth out the original sharp edge while suppressing noise. It is necessary
小波变换
to select the appropriate variance parameter σ of Gaussian function to get the best image processing effect.
Canny operator: The edge detection operator is derived based on optimization
ideological[8]. First with the Gaussian filter to smooth the image, and then calculate gradient magnitude and direction of the filtered image, and then apply non-maxima suppression method to the gradient magnitude to obtain the edge detection image. This operator uses a dual-threshold method to detect and connect edge, this method is less susceptible to noise and is ability to detect weak edge, but the continuity of the boundary is worse than Log operator. From the simulation result, all of these traditional operators have the problem of error detection or missing detection. The detection accuracy can not achieve requirements really or technically.
B. analysis of the new method
The new edge detection method get the detection results at different scales by making the best of the scale
characteristic of wavelet transform. At j=1, the new method can detect the edge details effectively. In addition, it has good accuracy. It forms the outline of image edge as the j increased. We can choose suitable edge detection result within all results at different scale according to actual needs. The partial enlargement picture of detection result at j=1 is shown in Figure 3.
Figure3. the partial enlargement picture of detection result at j=1
In this picture, the edge details are reserved completely, and it has a high-precision positioning.
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 新中式装修风格 最美新中式装修风格
- 环境工程外文文献及翻译 水处理
- 盘点各种灭蚊工具
- 道路修补施工方案
- 质量保证族知识点
- 海关办公楼图纸目录
- 德州城计算书
- 英语文献翻译-环境科学-环境地球化学专业
- 建筑施工现场冬季安全生产检查表
- 惠欣翰园碑林景区的设计与开发
- 监理薪酬管理办法
- 生态承载力与低碳生态城市规划
- 湿地恢复生态工程
- 景观设计可借鉴的九个细节
- 苏打水
- 南宁城市规划
- 第11章 大坝原型观测工程施工
- 郑州新房污染治理甲醛
- 14-15美社村美贯村资料
- 乳饮料
- 基坑预算
- 寺院塑像工程施工合同
- 乡村游背景下的邢台市乡村聚落景观规划设计研究
- 2.多样性湿地景观的成都实践_以成都198环城湿地公园案例区景观规划为例
- 器材用途分类
- 5月份安全日记
- 砂当量试验据需要确定冲洗液的数量
- 关于收购深圳高文安设计有限公司股权的可行性研究报告
- 第13章 质量保证体系措施
- 工程项目招标投标存在的突出问题与防控对策研究
网友关注视频
- 第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 七年级英语下册 上海牛津版 Unit9
- 《小学数学二年级下册》第二单元测试题讲解
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
- 冀教版小学数学二年级下册第二单元《余数和除数的关系》
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 外研版英语七年级下册module3 unit2第二课时
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
- 外研版英语三起6年级下册(14版)Module3 Unit2
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 二年级下册数学第三课 搭一搭⚖⚖
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
- 沪教版八年级下册数学练习册21.3(2)分式方程P15
- 北师大版数学四年级下册3.4包装
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
- 二年级下册数学第二课
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
- 外研版英语七年级下册module1unit3名词性物主代词讲解
- 北师大版数学四年级下册第三单元第四节街心广场
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理