Optimization of nonlinear wave function parameters
上传者:郭东辉|上传时间:2015-04-28|密次下载
Optimization of nonlinear wave function parameters
内容需要下载文档才能查看
OptimizationofNonlinearWaveFunctionParameters
RONSHEPARD,MICHAELMINKOFF
ChemistryDivision,ArgonneNationalLaboratory,Argonne,Illinois60439
Received4April2006;accepted17May2006
Publishedonline4August2006inWileyInterScience(http://wendang.chazidian.com).DOI10.1002/qua.21140
ABSTRACT:Anenergy-basedoptimizationmethodispresentedforourrecently
developednonlinearwavefunctionexpansionformforelectronicwavefunctions.Thisexpansionformisbasedonspineigenfunctions,usingthegraphicalunitarygroup
approach(GUGA).Thewavefunctionisexpandedinabasisofproductfunctions,allowingapplicationtoclosed-shellandopen-shellsystemsandtogroundandexcitedelectronicstates.Eachproductbasisfunctionisitselfamulticon?gurationalfunctionthatdependsonarelativelysmallnumberofnonlinearparameterscalledarcfactors.Theenergy-basedoptimizationisformulatedintermsofanalyticarcfactorgradientsandorbital-levelHamiltonianmatricesthatcorrespondtoaspeci?ckindofuncontractionofeachoftheproductbasisfunctions.Theseorbital-levelHamiltonianmatricesgiveanintuitive
representationoftheenergyintermsofdisjointsubsetsofthearcfactors,theyprovideforanef?cientcomputationofgradientsoftheenergywithrespecttothearcfactors,andtheyallowoptimalarcfactorstobedeterminedinclosedformforsubspacesofthefullvariationproblem.Timingsforenergyandarcfactorgradientcomputationsinvolvingexpansionspacesof?1024con?gurationstatefunctionsarereported.Preliminaryconvergencestudiesandmoleculardissociationcurvesarepresentedforsomesmallmolecules.©2006Wiley
Periodicals,Inc.IntJQuantumChem106:3190–3207,2006
Keywords:nonlinear;wavefunction;optimization;GUGA
methodisbasedonthegraphicalunitarygroupapproach(GUGA)ofShavitt[3–9].Thisnewap-proachisintendedtobeusedinMCSCF[10,11]andcon?gurationinteraction(CI)[6,12]wavefunc-tions,anditisbeingdevelopedwithintheCOLUM-BUSProgramSystem[12–14],whosemainempha-sisistheaccuratecomputationofglobalpotentialenergysurfacesofgroundandexcitedstates.Thewavefunctionisexpandedinabasisofproductfunctions,andeachproductfunctiondependsonarelativelysmallnumberofnonlinearparameters.Inthepreviouswork,wedevelopedrecursiveproce-duresforef?cientcomputationoftheoverlapbe-tweentwobasisfunctionSMN??M?N?,Hamilto-
1.Introduction
I
npreviouswork[1,2],wehaveintroducedacomputationalmethodbasedonanewtypeofexpansionbasisforelectronicwavefunctions.This
Correspondenceto:R.Shepard;e-mail:shepard@tcg.anl.govContractgrantsponsor:U.S.DepartmentofEnergy(Of?ceofBasicEnergySciences,DivisionofChemicalSciences,Geo-sciencesandBiosciences).
Contractgrantnumber:W-31-109-ENG-38.
©2006WileyPeriodicals,Inc.*ThisarticleisaUSGovern-mentworkand,assuch,isinthepublicdomainintheUnitedStatesof
内容需要下载文档才能查看America.
InternationalJournalofQuantumChemistry,Vol106,3190–3207(2006)©2006WileyPeriodicals,Inc.
OPTIMIZATIONOFNONLINEARWAVEFUNCTIONPARAMETERS
walks,soitisconvenienttoorganizethegraphbasedonstorageofthenodes;thestorageoftheconnectingarcs,andotherinformationdiscussedbelow,associatedwitheachnodeiscalledadistinctrowtable(DRT).EachCSFmaybeassignedacon-tiguousintegerindexthatmaybecomputedasasummationoftheintegerarcweightsassociatedwiththearcs:
n?1
FIGURE1.Graphicalrepresentationofthefourpossi-blearctypesinaShavittgraph.Stepd?0corre-spondstoanemptyorbital,d?1toasinglyoccu-piedorbitalthatincreasesthespinby1?2,d?2toasinglyoccupiedorbitalthatdecreasesthespinby1?2,andd?3toadoublyoccupiedorbital.a,b,cvaluesofthetopnodeofthearcaregivenrelativetotheval-uesofthebottomnodeofthearc.
m?1?
p?0
?y
n?1
dpjp
?1?
p?0
?y
??p?
.(1)
??N?,transitionnianmatrixelementsHMN??M?H
one-particlereduceddensitymatricesDMNpq,andtransitiontwo-particlereduceddensitymatricesMNdpqrs.Fromthesequantities,groundandexcitedelectronicstateenergiesmaybecomputedalongwiththeexpectationvaluesofotherarbitraryone-andtwo-electronoperators.Inthepresentwork,weexaminetheoptimizationofthenonlinearwavefunctionparameterstominimizetheenergy.
2.Method
Wesummarizebrie?ythemethodandnotationthathavebeenintroducedpreviously[1,2].EachnodeofaShavittgraph,indexedbyj,isassociatedwithanintegertriple(aj,bj,cj)andcorrespondsto?2spineigenfunctionwitheigenvalueSj(Sj?1)anS
withbj?2Sj,toaspeci?cnumberofelectronsNj?2aj?bj,andtoasubspaceoftheorbitalsofdimen-sionnj?aj?bj?cj.TheintegertriplecorrespondstoarowofaPaldusABCtableau[15–20].TheShavittgraphisadirectedgraphwithasingletail(source)nodelocatedata?ctitiouslevel0corre-spondingtothephysicalvacuum,andasinglehead(sink)atthehighestlevelcorrespondingtotheNandSofinterest.ThenodesoftheShavittgraphareconnectedbyarcs.ThefourarctypesareshowninFigure1.Eachcon?gurationstatefunction(CSF)expansiontermcorrespondstoawalkfromthegraphtailtothegraphhead.Thiswalktouchesonenodeateachlevel,andittouchesonlythesinglearcateachlevelthatconnectsthenodebelowittothenodeaboveitinthatwalk.ACSFcantherebyberepresentedbydenotingeitherthesetofnodesinthecorrespondingwalkorthesequenceofsteps(thestepvector)inthatwalk.InatypicalShavittgraph,anindividualnodemaybetouchedbymany
Weadopttheconventionthatjpisthenodeindexofthebottomofthearcinthewalkofinterestatlevelp,anddpisthestepnumberassociatedwiththearc.Inthisway,thepairofindices(d,j)specifyanarc.Inthefollowing,itissometimesconvenienttode-notea(d,j)pairbyasinglearcindex?,and?(p)inEq.(1)isthearcatlevelpinthewalk.FromtheinformationstoredintheDRT,itisstraightforwardtoconstructthestepvectorfromagivenCSFindexm,ortodothereverseanddeterminetheintegerCSFindexmfromagivenstepvector.
Inaproductbasisfunction,anumericalarcfac-torisassignedtoeachofthearcsinagivenShavittgraph.Thesearcfactorsaredenotedindividuallyas?djwhere,analogoustotheydjnotationofthearcweightsgivenabove,jistheindexofthenodeatthebottomofthearcanddisthestepnumberofthearc.TheCSFcoef?cientxmassociatedwithapartic-ularwalkmistakenastheproductofthearcfactorsinthatwalk.Thatis,inanalogytoEq.(1):
n?1
xm?
p?0
??
n?1
dp,mjp,m
?
p?0
??
??p,m?
.(2)
Becauseonearcfactorisassociatedwitheachor-bitallevelinthisproduct,therearealwaysexactlynarcfactorsthatcontributetoeachoftheCSFcoef?cients.Aproductbasisfunction,denoted?M?,isthende?nedintermsoftheseCSFcoef?cientsas
Ncsf
?M??
m?1
??.?x?m
Mm
(3)
Therecanbeseveralsetsofarcfactors,eachasso-ciatedwithacorrespondingproductfunctionthroughEqs.(2)and(3).ThemappingofasetofarcfactorstothevectorofCSFcoef?cientswillbedenotedasxM?L(?M).Thisisa
内容需要下载文档才能查看many-to-one
VOL.106,NO.15DOI10.1002/quaINTERNATIONALJOURNALOFQUANTUMCHEMISTRY3191
SHEPARDANDMINKOFF
mappingbecausemorethanonesetofarcfactors?maptothesameCSFcoef?cientvectorx.Thislackofuniquenessmaybeeliminated[1]byintroducinganarcphaseandnormalizationconventionbasedonthelowerwalkpartialproductfunctionsassoci-atedwitheachnodeoftheShavittgraph.Asetofarcfactors?Mthatsatisfythisnormalizationcon-ventionisinstandardform,andsuchasetofarcfactorsmaybecharacterizedbyasmallernumberofessentialvariationalparameters?M.Thenumberoftheseessentialvariables[1]isgivenbyN??Narc?Nrow?1,whereNarcandNrowarethenumberofarcsandnodes,respectively,intheShavittgraph.Thesestandardformarcfactorsalsohaveasimpleandintuitivemathematicalandphysicalinterpre-tation[1].
Forthespecialcaseoffull-CIShavittgraphs,therelevantgraphstatistics(seeRefs.[1,3,15]andAppendixA)aregivenbyb?1n?1n?1Ncsf?acwithn?Nrangingfromn?2ton?46.Notein
particularthatthelastrowcorrespondstoanex-pansionspaceof?5.5?1024CSFs;thisis?9.2NA,or?9moles,ofCSFs,manyordersofmagnitudelargerthancanbetreatedwithtraditionalCImeth-ods,yetonlyamodesteffortofafewsecondsisrequiredtocomputeHMNforthisexpansion.Thegoaloftheproductfunctionapproachistoelimi-natealleffortthatdependsonNcsfthatisassociatedwithwavefunctionmanipulation,interpretation,andoptimization.ThisgoalisapracticalnecessityforwavefunctionexpansionssuchasthoseinthebottomhalfofTableIorlarger.
Figure2presentsanexampleofaShavittgraphfora3-electron,3-orbital,doublet,full-CIexpan-sion,whichconsistsof8CSFs.Thecorrespondingproductfunctionisgivenintermsoftheseexpan-sionCSFs(usingstep-vectornotation)as
???x?m
8
m
????
?6????1??2??3?a?c??1?
1
1
???3
(4)
?M??
m?1
Nrow??a?1??b?1??c?1?
(5)
???3,1?1,2?0,5??310????3,1?0,2?1,6??301????1,1?3,3?0,5??130????1,1?2,3?1,6??121????1,1?1,3?2,7??112????1,1?0,3?3,8??103?
(6)
???0,1?3,4?1,6??031????0,1?1,4?3,8??013?.
(12)
Althoughasingleproductbasisfunctionisa
complicatedmulticon?gurationalfunctionthatiscapableofdescribingbonddissociationprocesses,electroncorrelation,andhasotherinterestingfea-tures[1],itisnotpossibleingeneraltowriteanarbitrarylinearcombinationofCSFsasasingleproductfunction.Amore?exiblewavefunctioniswrittenasthegenerallinearcombination
Narc??2a?1?b?2c?1???1??4??5?
??a?c????1??2??1?
N??b?3ac?a?c???ac?a?c?
?2???1????2??3???a?c??3??2??,
1
(7)
with??min(a,c).Forthespecialcaseofsingletfull-CIexpansionswithn?N,thesegraphstatisticsaregivenby
n?11
1Ncsf?
2n
??
2
(8)(9)(10)(11)
????
Nrow??n?2??n?3??n?4?/24Narc?n?n?2??2n?5?/12N??n?n2?3n?2?/8.
?c?M?,
N?
MM
(13)
Forlargen,theseexactrelationsgiveapproxi-matelyNcsf?(8/?)4n/n2,Nrow?n3/24,Narc?n3/6?4Nrow,N??n3/8?3Nrow,n?log4(Ncsf),and??Nrow/n??(N2).TableIshowsthesevalues
inwhichtheN?productfunctions?M?formanexpansionbasis.Theoptimizationofthelinearex-pansioncoef?cientsctominimizetheenergyex-pectationvaluetakestheformofageneralizedsymmetriceigenvalueequation
Hc?ScE,
(14)
3192INTERNATIONALJOURNALOFQUANTUMCHEMISTRYDOI10.1002/quaVOL.106,NO.15
OPTIMIZATIONOFNONLINEARWAVEFUNCTIONPARAMETERS
TABLEI______________________________________________________________________________________________
Statisticsforsingletfull-CIwavefunctionexpansions.n?N246810121416182022242628303234363840424446
a
Ncsf
3201751,76419,404226,5122,760,61534,763,300449,141,8365,924,217,93679,483,257,3081,081,724,803,60014,901,311,070,000207,426,250,094,4002,913,690,606,794,77541,255,439,318,353,700588,272,005,095,043,5008,441,132,926,294,530,000121,805,548,126,430,067,9001,766,594,752,418,700,032,40025,739,723,541,439,406,257,200376,607,675,256,599,252,232,0005,531,425,230,331,301,517,157,500
Nrow51430559114020428538550665081910151240149617852109247028703311379543244900
N?21339861602674136048461145150719382444303137054472533863097391859099121136312949
t(HMN)a0.000.000.000.000.000.000.010.040.070.130.210.340.540.821.211.752.493.464.666.278.2511.1914.43
t(E?)b0.000.000.000.010.050.160.441.243.489.2925.6765.49140.61250.45423.87676.761.07E31.62E32.38E33.48E34.93E36.88E39.47E3
t(E?;FD)c0.000.000.020.100.643.2012.3936.24118.44297.70632.941.32E32.64E34.97E38.97E31.57E42.66E44.37E46.89E41.08E51.64E52.54E53.74E5
??N?matrixelement.Timesareinsecondsona2.5-GHzPowerMacG5toconstructasingle?M?H
TimesinsecondstoconstructtheanalyticgradientvectorE?(?0)??E(?)/??(mM)??0forN??1,usingtheG[u]andS[u]arrays.c
Timesinsecondstoconstructthegradientwitha?nite-differenceapproximation,t(E?;FD)?2N??t(HMN).
b
??N?andSMN??M?N?.Theef?-withHMN??M?H
cientcomputationofthemetricmatrixSandoftheHamiltonianmatrixHhasbeendescribedprevi-ously[1,2].Giventwosetsofessentialvariables?Mand?Nandthecorrespondingarcfactors?Mand?N,thecomputationofanoverlapSMNelementscalesas?(?n),andthecomputationofaHamilto-nianmatrixelementHMNscalesas?(?n4).Thesca-larfactor??Nrow/n?Narc/nscalesbetween?(N0)and?(N2),dependingonthecomplexityoftheunderlyingShavittgraph,anditcorrespondstotheaverageincrementaleffortperorbitallevelintherecursivecomputationofHMNandSMN.ThereisnocomponentofthiseffortthatscalesasNcsf.ThroughtheRitzvariationalprinciple,thelowesteigenval-uescomputedfromtheproductfunctionbasisinEq.(14)areupperboundstothecorrespondingeigenvaluesoftheunderlyinglinearCSFexpansionspace,whichinturnareupperboundstotheexactfull-CIeigenvalues.Consequently,thisgeneralap-proachisapplicabletobothgroundandexcitedelectronicstates.Thewavefunction???isaspin
eigenfunctionbecausetheproductbasisfunctions
?2;thereforethismethod?M?areeigenfunctionsofS
doesnotsufferfromspincontaminationorspininstabilities.
If?M?and?N?aretwoarbitraryproductfunctionsde?nedbythearcfactors?Mand?N,aHamilto-nianmatrixelementintheproductfunctionbasismaybewrittenusingstandardGUGAnotationas??N?HMN??M?H
?
?h??h
p,qp,q
pq
?pq?N??1?M?E2
MNDpq?1
2
pq
p,q,r,s
?g
p,q,r,s
?g
d
pqrs
?M?e?pqrs?N?
MN
pqrspqrs
?Tr?hDMN??1Tr?gdMN?,2
(15)
wherehpqandgpqrsaretheone-andtwo-electron
Hamiltonianintegralsindexedbythemolecularor-?pqandebitalindicesp,q,r,ands.OperatorsE?pqrs?
?pqE?rs??rqE?psarethegeneratorsandthenormal-E
VOL.106,NO.15DOI10.1002/quaINTERNATIONALJOURNALOFQUANTUMCHEMISTRY3193
SHEPARDANDMINKOFF
?cientsfortwostates??I?and??J?fromEqs.(13)and(14),thestatetransitiondensitymatricesmaybecomputedas
IJ?pq?E?qp??J??Dpq?1??I?E2
M,N
?ccD
IJ
MN
MNpq
IJdpqrs?1??I?e?pqrs?e?pqsr?e?qprs?e?qpsr??J?4
?
M,N
?ccd
IJMN
MNpqrs.(17)
FIGURE2.Shavittgraphforathree-electron,three-orbital,doubletfull-CIexpansion.Nodeindexisde-notedbythecircledvalues,andarcweightydjbythesquareboxes;arcfactor?djiswrittennexttoitscorre-spondingarc.
ordergeneratorproducts.Thecommutationrela-?pq,E?rs]??rqE?ps??psE?rqresultsintheoper-tion[E
atoridentitye?pqrs?e?rspq.Becauseoftheindexsymmetryoftheone-andtwo-electronintegrals(hpq?hqp,gpqrs?gpqsrandgpqrs?grspqwithallquantitiesassumedtobereal),wechoosetouseinEq.(15)thesymmetrizedone-andtwo-particletransitiondensitymatrices,de?nedas
MN?pq?E?qp?N??1?M?EDpq
2
MN
??M?e?pqrs?e?pqsr?e?qprs?e?qpsr?N?.dpqrs
Fromthesequantities,arbitraryexpectationvalues
(I?J)andtransitionproperties(I??J)maybecomputed.
AsdiscussedindetailinRef.[2],thetransitiondensitymatricesarecomputedintermsofsegmentvaluesofShavittloops.Inthepresentwork,itisconvenienttoignorethespecialtreatmentoftheupperandlowerwalksforeachShavittloop,orforalltheupperandlowerwalksforgroupsofShavittloops.Inthiscase,thesegmentfactorscorrespond-ingtothesegmentswithinanupperorlowerwalkareassociatedwiththesegmenttypeD.Theseg-menttypeD,whichisactuallyanaliasforthesegmenttypeRL0,hasthesegmentvalues?[Tu(dbra,dket,bbra,bket;D)]??dbra,dket?bbra,bket???bra,?ket;thatis,thesegmentvalueisunitywhenthebraandketarcsarethesameandithasavalueofzerootherwise.Withthisconvention,eachShavittloopvalueconsistsofaproductofexactlynseg-mentfactorsfornmolecularorbitals.
ThetransitiondensitymatricesinEq.(16)arecomputedasasequenceofsparsematrixproductsofsegmentfactors,denotedFMN???(Qu).Thisfactor-izationismosteasilyrealizedfromtheauxiliarypairgraphrepresentationoftheShavittloops.Fig-ure3showsthisrelationforatypicalone-particleShavittloop.Aone-particledensityelementiswrit-tenas
MNDpq?FMN?Q0?FMN?Q1?...FMN?Qp?1?FMN?Qp?...
1
4
(16)
?...FMN?Qq?1?FMN?Qq?...FMN?Qn?2?FMN?Qn?1?,
(18)
withQu?Dforu?0...(p?2)andforu?q...(n?1).Asimilarrelationholdsforthetwo-particledensityconstruction.Inthisexpression,pandqaretheorbitallevelsassociatedwiththedensityelement.FMN(Qu)isasparserectangularmatrixindexedbythenodepairs?atleveluandnodepairs??atlevel(u?1).Thesegmentfactor
内容需要下载文档才能查看is
Theseexpressionsde?nethenormalizationandin-dexingconventionsofthedensitymatricesinthiswork(seealsoRefs.[2,11]).Theadjointoperator
??pq?E?qpidentityEresultsintheidentitiesDMN?
DNManddMN?dNM.Giventheone-andtwo-particletransitiondensitymatrixelements,itisstraightforwardtocombinethesequantitieswiththeappropriateHamiltonianintegralstocomputethematrixelementHMN.Giventheexpansioncoef-
3194INTERNATIONALJOURNALOFQUANTUMCHEMISTRYDOI10.1002/quaVOL.106,NO.15
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 2015小升初英语备战辅导-副词【小学学科网】
- 2014小升初英语冲刺测试题(J)-全优发展-广州版(无答案)【小学学科网】
- 白城小学毕业检测工作安排告家长通知书
- 2014小升初数学入学试题讲义1【小学学科网】
- 2014小升初数学冲刺卷(B)-轻松夺冠-苏教版(无答案)【小学学科网】
- 2015年期末体育考核方案
- 2014北京市小升初英语分班考试模拟试题【小学学科网】
- 2011济南小升初英语升级考试题【小学学科网】
- 简单文言文练习
- [学习方法] 小学数学知识点
- 2014小升初英语复习冲刺试题(H)-天天炼-通用版【小学学科网】
- 2014小升初数学冲刺试卷3-轻松夺冠-通用版(无答案)【小学学科网】
- 2015小升初英语备战辅导-动词【小学学科网】
- 2015小升初英语备战辅导-情态动词【小学学科网】
- 2015小升初英语备战辅导-动名词和动词不定式的比较【小学学科网】
- 2015小升初英语备战辅导-年月日时刻表示法【小学学科网】
- 深圳市小升初英语入学测试题-轻巧夺冠(无答案)【小学学科网】
- 贺尔小学寄宿生一日常规
- 2015小升初英语备战辅导-数词【小学学科网】
- 2014广东省深圳市小升初英语全真模拟试题-优化集结-深圳朗文版【小学学科网】
- 2015小升初英语备战辅导-非限定动词【小学学科网】
- 2015小升初英语备考专练-阅读(无答案)【小学学科网】
- 必读书目 2
- 2014小升初英语突击训练试题-轻巧夺冠-通用版【小学学科网】
- 会计职业良好的习化与练就
- 小升初数学毕业复习综合卷五-西师大版(无答案)【小学学科网】
- 2014小升初数学冲刺试卷1-轻巧夺冠-通用版(无答案)【小学学科网】
- 2014小升初数学冲刺卷(H)-轻松夺冠-苏教版(无答案)【小学学科网】
- 2014小升初数学入学试题讲义2【小学学科网】
- 2014小升初英语冲刺测试题(M)-全优发展-广州版(无答案)【小学学科网】
网友关注视频
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 外研版英语三起6年级下册(14版)Module3 Unit2
- 外研版英语七年级下册module3 unit1第二课时
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 七年级下册外研版英语M8U2reading
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 《空中课堂》二年级下册 数学第一单元第1课时
- 小学英语单词
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
- 3月2日小学二年级数学下册(数一数)
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
- 沪教版八年级下册数学练习册21.3(2)分式方程P15
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 外研版八年级英语下学期 Module3
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 二年级下册数学第一课
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 冀教版小学数学二年级下册第二单元《余数和除数的关系》
- 二年级下册数学第三课 搭一搭⚖⚖
- 二年级下册数学第二课
- 冀教版小学数学二年级下册1
- 人教版二年级下册数学
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理