pb_flow_battery
上传者:包海昆|上传时间:2015-04-28|密次下载
pb_flow_battery
comsol 铅酸液流电池算例
Solved with COMSOL Multiphysics 5.0
Soluble Lead-Acid Redox Flow Battery
Introduction
In a redox flow battery electrochemical energy is stored as redox couples in the
electrolyte, which is stored in tanks outside the electrochemical cell. During operation, electrolyte is pumped through the cell and, due to the electrochemical reactions, the individual concentrations of the active species in the electrolyte are changed. The state of charge of the flow battery is determined by the electrolyte species concentrations, the total flowing electrolyte volume in the system
(tank+pump+hooses+cell), and possibly also by the concentration of solid species on the electrodes. Depending on the cell chemistry the cell can have separated or combined anode and cathode compartments and electrolyte tanks.
Pump
Pb2+
HSO4
Tank
2+PbH+NegativeElectrode(Pb)PositiveElectrode(PbO2/PbO)H
HSO4 +Cell
Figure 1: Working principle of the soluble lead acid flow battery.
1 | SOLUBLE LEAD-ACID REDOX FLOW BATTERY
comsol 铅酸液流电池算例
Solved with COMSOL Multiphysics 5.0
In the soluble lead acid flow battery one electrolyte solution is used. The active
component in the electrolyte is the lead ion that reacts on the electrodes to form solid lead (negative electrode) or lead oxide (positive electrode). The electrode chemistry is similar to a traditional lead-acid battery, with the difference that solid lead sulfonate is not formed in the electrodes.
This model simulates a soluble lead-acid flow battery during an applied
charge-discharge load cycle. The surface chemistry of the positive electrode is modeled by using two different lead oxides and two different positive electrode reactions in the model.
Model Definition
CELL GEOMETRY AND MESH
The electrochemical cell consist of two flat 10 cm square electrodes, placed in parallel with a 12 mm gap in between. The aspect ratio of the cell motivates modeling the cell in 2D. The cell geometry and mesh is shown in Figure 2.Outlet
Negative ElectrodePositive Electrode
Inlet
Figure 2: Geometry and mesh of the electrochemical cell.
2 | SOLUBLE LEAD-ACID REDOX FLOW BATTERY
comsol 铅酸液流电池算例
Solved with COMSOL Multiphysics 5.0
Due to the very high electrical conductivity of the electrodes, the potential gradients in the electrodes are neglected, and the electrodes are not included in the geometry.To handle possible edge effects in the electrolyte, 1 mm regions are added at the inlet and outlet, outside the active electrode region.
A mapped rectangular mesh is used, and boundary meshing is used to resolve the steep gradients in the electrolyte close to the electrode surfaces.
ELECTROLYTE MASS AND CURRENT TRANSPORT EQUATIONS
The electrolyte is based on a mixture of lead methane sulfonate, methane sulfonic acid and water, which in this model is assumed to dissociate into an electrolyte consisting of Pb2+, H+, HSO4--ions dissolved in a bulk solution of zero-charged species (mainly water). Electroneutrality is assumed locally in the electrolyte. The combination of these assumptions allow for the use of Tertiary Current Distribution, Nernst-Planck interface for modeling the electrolyte transport.
The electric potential in the electrodes is assumed to be space independent. The negative electrode is grounded. On the positive electrode, an electrode potential is calculated in order to fulfill a current density condition defined by the load cycle. (Using the Electrolyte-Electrode Boundary Interface boundary condition).
A load cycle of 1 h charge, 20 s rest, 1 h discharge, 20 s is applied twice to the cell. During charge or discharge a constant current density corresponding to a mean current density in the cell 200 A/m2 is applied.
The species fluxes are defined on the electrode surfaces according to the electrode reactions below. An Inflow condition is used at the inlet with the inlet concentrations (cin,Pb2+ and cin,H+) taken from the tank model described below. An Outflow
condition is set at the outlet. All other boundaries are isolated.
Negative Electrode Reaction
On the negative electrode the following electrode reaction occurs:
Pb2++2e Pb(s)- (1)
with the kinetics being described by a Butler-Volmer expression:
FPbF -----η--- –exp –-----η--- expiPb=Fk0cPb2+ RT RT
Where k0+ is a rate constant and cPb2+ is the concentration of lead ions in the
electrolyte. Pb (2)
3 | SOLUBLE LEAD-ACID REDOX FLOW BATTERY
comsol 铅酸液流电池算例
Solved with COMSOL Multiphysics 5.0
As reference electrode we use the negative electrode at reference conditions. The equilibrium potential for the negative electrode is assumed to follow the Nernst equation according to:
RTE0,neg=0V+--------ln(cPb2+)nF (3)
Positive Electrode Main Reaction
The positive electrode main reaction is:
PbO2(s)+4H+2e Pb+-2++2H2O (4)
with the kinetics being described by a Butler-Volmer expression:
iPbO2=Fk0
PbOPbO2cH+FηF----- exp -----η--- –exp –-------- cPb2+---0 RT RT cH+ (5)0where k02 is a rate constant, cH+ is the electrolyte proton concentration and cH+ is the proton reference concentration in the electrolyte at equilibrium.
The positive main reaction has the following equilibrium potential, described by the Nernst Equation:
RT cPb2+ E0,pos=1,8V–--------ln ---------- nF cH+ (6)
Positive Electrode Side Reaction
Multiple types of lead oxides may form on the positive electrode. In this model the following side reaction will be investigated:
PbO2(s)+2H+2e PbO(s)+H2O
where the electrode is kinetics is described by
iPbO=Fk0PbO2 +- (7)FηFηf2bK0cPbOexp -------- –K0cH+cPbO2exp –-------- RT RT (8)
where the overpotential, η, is the same as for the positive electrode main reaction (Equation 6). (The deviation of the equilibrium potential of the side reaction versus the positive main reaction equilibrium potential is controlled by the rate parameters.)
4 | SOLUBLE LEAD-ACID REDOX FLOW BATTERY
comsol 铅酸液流电池算例
Solved with COMSOL Multiphysics 5.0
In Equation 8 K0 and K0 are rate constants, and cPbO and cPbO2 are the surface
concentration of the lead oxides (mol/m2).
TANK MODELfb
The electrolyte flowing out from the cell flows into the tank, undergoes mixing, and is then led into the cell again on the inlet side.
Assuming good mixing in the tank the inlet concentrations, cin,Pb2+ and cin,H+, are governed by the following ODEs:
V---d(c2+)=Lin,Pb
V---dc+)=Lin,H outlet(NPb2+ n)dS– inlet(NPb2+ n)dS (9)
outlet(NH+ n)dS– inlet(NH+ n)dS (10)
Where V is the total volume of flowing electrolyte in the tank, and L is the height of the electrodes. (NPb2+ n and NH+ n denote the molar fluxes of the respective
electrolyte species in the normal direction to the boundary).
The two ODEs are modeled using an ODEs and DAEs interface.
FLUID FLOW EQUATIONS
The fluid is led into the cell at a velocity Vin of 2.3 cm/s. The relevant Reynolds number for the flow between the plates is:
ρVinhRe=----------------≈300μ (11)
where the parameter values for water are used for the density ρ, 1000 kg/m3, and viscosity μ, 10-3 Pa·s. We can assume that the flow is in the laminar regime (Re<2000), and hence the Laminar Flow interface is used to model the fluid flow.
Vin is applied at the inlet, a pressure condition is applied to the outlet, and no slip conditions are applied to the electrode surfaces and channel walls. The induced
convection at the electrode surfaces due to the electrochemical reactions is assumed to be negligible. In this way the flow model is stationary and only solved for once. The convective flow is used as a model input to the Tertiary Current Distribution, Nernst-Planck interface.
5 | SOLUBLE LEAD-ACID REDOX FLOW BATTERY
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 生活中小知识(含美容)
- 定额计算规则---电气设备安装、给排水、采暖、燃气工程
- 道路勘测设计第三章_平面设计
- 如何去爱
- 五、六十年代港、日電影交流座談會
- 附录5高速公路安全技术交底汇编
- 合理膳食与健康
- 安全操作规程_14
- 论建筑材料的发展趋势
- 家庭装修具体流程与施工次序[指南]
- 【血型分析】AB型血如何在假期应付亲戚?! – 美国神婆星座网
- 加油站生产安全事故应急预案
- 房地产顶级客户关系管理全新实践
- 2005年城市规划管理与法规试题及答案
- 家庭装修流程及具体施工方法步骤
- 2010年注册造价工程师《工程造价计价与控制》模拟试题
- [最新]论文 范文【 精品】关于城市建筑规划的几点思考
- 城市建筑节能发展规划编制模式研究(可编辑)
- 路面施工技术方案
- 【十二星座】12星座女生钱都花在什么地方了?– 美国神婆星座网
- 城市道路照明施工资质申请表
- 【十二星座】看12星座蚁族翻身大作战 – 美国神婆星座网
- 第三单元 《关注经济生活》---财产的继承教案 Microsoft Word 文档
- 第四届BIM大赛考前练习建筑设计(含答案)
- 钢结构工程施工技术讲座
- 高炉砌筑技术要求.doc
- 钢结构工程施工验收规范(最新整理)
- 接受哺乳拥抱美丽
- 【精品PPT】网上新闻采访报道的道德规范
- 十二星座心底的一句话
网友关注视频
- 三年级英语单词记忆下册(沪教版)第一二单元复习
- 3月2日小学二年级数学下册(数一数)
- 二年级下册数学第三课 搭一搭⚖⚖
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 外研版英语七年级下册module3 unit2第一课时
- 河南省名校课堂七年级下册英语第一课(2020年2月10日)
- 30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 《小学数学二年级下册》第二单元测试题讲解
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 冀教版英语四年级下册第二课
- 人教版二年级下册数学
- 苏教版二年级下册数学《认识东、南、西、北》
- 外研版英语七年级下册module3 unit2第二课时
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 北师大版数学四年级下册3.4包装
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 沪教版八年级下册数学练习册一次函数复习题B组(P11)
- 小学英语单词
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
- 七年级下册外研版英语M8U2reading
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 六年级英语下册上海牛津版教材讲解 U1单词
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理