pb_flow_battery
上传者:包海昆|上传时间:2015-04-28|密次下载
pb_flow_battery
comsol 铅酸液流电池算例
Solved with COMSOL Multiphysics 5.0
Soluble Lead-Acid Redox Flow Battery
Introduction
In a redox flow battery electrochemical energy is stored as redox couples in the
electrolyte, which is stored in tanks outside the electrochemical cell. During operation, electrolyte is pumped through the cell and, due to the electrochemical reactions, the individual concentrations of the active species in the electrolyte are changed. The state of charge of the flow battery is determined by the electrolyte species concentrations, the total flowing electrolyte volume in the system
(tank+pump+hooses+cell), and possibly also by the concentration of solid species on the electrodes. Depending on the cell chemistry the cell can have separated or combined anode and cathode compartments and electrolyte tanks.
Pump
Pb2+
HSO4
Tank
2+PbH+NegativeElectrode(Pb)PositiveElectrode(PbO2/PbO)H
HSO4 +Cell
Figure 1: Working principle of the soluble lead acid flow battery.
1 | SOLUBLE LEAD-ACID REDOX FLOW BATTERY
comsol 铅酸液流电池算例
Solved with COMSOL Multiphysics 5.0
In the soluble lead acid flow battery one electrolyte solution is used. The active
component in the electrolyte is the lead ion that reacts on the electrodes to form solid lead (negative electrode) or lead oxide (positive electrode). The electrode chemistry is similar to a traditional lead-acid battery, with the difference that solid lead sulfonate is not formed in the electrodes.
This model simulates a soluble lead-acid flow battery during an applied
charge-discharge load cycle. The surface chemistry of the positive electrode is modeled by using two different lead oxides and two different positive electrode reactions in the model.
Model Definition
CELL GEOMETRY AND MESH
The electrochemical cell consist of two flat 10 cm square electrodes, placed in parallel with a 12 mm gap in between. The aspect ratio of the cell motivates modeling the cell in 2D. The cell geometry and mesh is shown in Figure 2.Outlet
Negative ElectrodePositive Electrode
Inlet
Figure 2: Geometry and mesh of the electrochemical cell.
2 | SOLUBLE LEAD-ACID REDOX FLOW BATTERY
comsol 铅酸液流电池算例
Solved with COMSOL Multiphysics 5.0
Due to the very high electrical conductivity of the electrodes, the potential gradients in the electrodes are neglected, and the electrodes are not included in the geometry.To handle possible edge effects in the electrolyte, 1 mm regions are added at the inlet and outlet, outside the active electrode region.
A mapped rectangular mesh is used, and boundary meshing is used to resolve the steep gradients in the electrolyte close to the electrode surfaces.
ELECTROLYTE MASS AND CURRENT TRANSPORT EQUATIONS
The electrolyte is based on a mixture of lead methane sulfonate, methane sulfonic acid and water, which in this model is assumed to dissociate into an electrolyte consisting of Pb2+, H+, HSO4--ions dissolved in a bulk solution of zero-charged species (mainly water). Electroneutrality is assumed locally in the electrolyte. The combination of these assumptions allow for the use of Tertiary Current Distribution, Nernst-Planck interface for modeling the electrolyte transport.
The electric potential in the electrodes is assumed to be space independent. The negative electrode is grounded. On the positive electrode, an electrode potential is calculated in order to fulfill a current density condition defined by the load cycle. (Using the Electrolyte-Electrode Boundary Interface boundary condition).
A load cycle of 1 h charge, 20 s rest, 1 h discharge, 20 s is applied twice to the cell. During charge or discharge a constant current density corresponding to a mean current density in the cell 200 A/m2 is applied.
The species fluxes are defined on the electrode surfaces according to the electrode reactions below. An Inflow condition is used at the inlet with the inlet concentrations (cin,Pb2+ and cin,H+) taken from the tank model described below. An Outflow
condition is set at the outlet. All other boundaries are isolated.
Negative Electrode Reaction
On the negative electrode the following electrode reaction occurs:
Pb2++2e Pb(s)- (1)
with the kinetics being described by a Butler-Volmer expression:
FPbF -----η--- –exp –-----η--- expiPb=Fk0cPb2+ RT RT
Where k0+ is a rate constant and cPb2+ is the concentration of lead ions in the
electrolyte. Pb (2)
3 | SOLUBLE LEAD-ACID REDOX FLOW BATTERY
comsol 铅酸液流电池算例
Solved with COMSOL Multiphysics 5.0
As reference electrode we use the negative electrode at reference conditions. The equilibrium potential for the negative electrode is assumed to follow the Nernst equation according to:
RTE0,neg=0V+--------ln(cPb2+)nF (3)
Positive Electrode Main Reaction
The positive electrode main reaction is:
PbO2(s)+4H+2e Pb+-2++2H2O (4)
with the kinetics being described by a Butler-Volmer expression:
iPbO2=Fk0
PbOPbO2cH+FηF----- exp -----η--- –exp –-------- cPb2+---0 RT RT cH+ (5)0where k02 is a rate constant, cH+ is the electrolyte proton concentration and cH+ is the proton reference concentration in the electrolyte at equilibrium.
The positive main reaction has the following equilibrium potential, described by the Nernst Equation:
RT cPb2+ E0,pos=1,8V–--------ln ---------- nF cH+ (6)
Positive Electrode Side Reaction
Multiple types of lead oxides may form on the positive electrode. In this model the following side reaction will be investigated:
PbO2(s)+2H+2e PbO(s)+H2O
where the electrode is kinetics is described by
iPbO=Fk0PbO2 +- (7)FηFηf2bK0cPbOexp -------- –K0cH+cPbO2exp –-------- RT RT (8)
where the overpotential, η, is the same as for the positive electrode main reaction (Equation 6). (The deviation of the equilibrium potential of the side reaction versus the positive main reaction equilibrium potential is controlled by the rate parameters.)
4 | SOLUBLE LEAD-ACID REDOX FLOW BATTERY
comsol 铅酸液流电池算例
Solved with COMSOL Multiphysics 5.0
In Equation 8 K0 and K0 are rate constants, and cPbO and cPbO2 are the surface
concentration of the lead oxides (mol/m2).
TANK MODELfb
The electrolyte flowing out from the cell flows into the tank, undergoes mixing, and is then led into the cell again on the inlet side.
Assuming good mixing in the tank the inlet concentrations, cin,Pb2+ and cin,H+, are governed by the following ODEs:
V---d(c2+)=Lin,Pb
V---dc+)=Lin,H outlet(NPb2+ n)dS– inlet(NPb2+ n)dS (9)
outlet(NH+ n)dS– inlet(NH+ n)dS (10)
Where V is the total volume of flowing electrolyte in the tank, and L is the height of the electrodes. (NPb2+ n and NH+ n denote the molar fluxes of the respective
electrolyte species in the normal direction to the boundary).
The two ODEs are modeled using an ODEs and DAEs interface.
FLUID FLOW EQUATIONS
The fluid is led into the cell at a velocity Vin of 2.3 cm/s. The relevant Reynolds number for the flow between the plates is:
ρVinhRe=----------------≈300μ (11)
where the parameter values for water are used for the density ρ, 1000 kg/m3, and viscosity μ, 10-3 Pa·s. We can assume that the flow is in the laminar regime (Re<2000), and hence the Laminar Flow interface is used to model the fluid flow.
Vin is applied at the inlet, a pressure condition is applied to the outlet, and no slip conditions are applied to the electrode surfaces and channel walls. The induced
convection at the electrode surfaces due to the electrochemical reactions is assumed to be negligible. In this way the flow model is stationary and only solved for once. The convective flow is used as a model input to the Tertiary Current Distribution, Nernst-Planck interface.
5 | SOLUBLE LEAD-ACID REDOX FLOW BATTERY
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 这是你的船-零售篇Word
- 管理培训(1)Word
- 人与动物
- 小学家庭教育活动实施方案
- 龟兔赛跑Word
- 体育产业发展专题培训班-浙大高端培训
- 雅思阅读一个月时间备考方案建议
- 2017年上半年系统分析师考试真题(上午题)答案
- 急性中毒 (2)Word
- 北极深海10种异形生物、大西洋10种深海动物、31种深海动物Word
- 政府购买社会组织公共服务及案例——设党课讲稿(44页)
- 小小图书馆Word
- 2017年上半年系统分析师考试真题(论文)答案
- 广州市南沙湿地一涌一景工程可行性研究报告-广州中撰咨询
- 王明夫:知行合一_内圣外王--王阳明漫谈Word
- 广州市南沙体育公园工程可行性研究报告-广州中撰咨询
- 纪念
- 信息文书与档案管理_11专门档案Word
- 江西嘉业总包工作大纲 (定稿)
- (精品)梁板柱平法标注整理_11G101-1图集Word
- 2015春五年级下册数学第二教案
- 中国环保法治三十年:回顾与反思——环境保护讲座讲稿(47页)
- DNA基因医学方面的动态Word模板动态模板
- 2017年上半年系统分析师考试真题(案例分析)答案
- 第七章 交易磋商与合同签订Word
- 雅思口语高分需建立自己的语言库
- 燃热专款冷凝推介Word
- 雅思学校哪家好?这6个网站可以帮到你
- 雅思听力7.5分的备考经验
- 灾害防治与事故应急处理Word
网友关注视频
- 精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
- 外研版八年级英语下学期 Module3
- 七年级英语下册 上海牛津版 Unit5
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 苏教版二年级下册数学《认识东、南、西、北》
- 冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
- 北师大版小学数学四年级下册第15课小数乘小数一
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 《空中课堂》二年级下册 数学第一单元第1课时
- 8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
- 3月2日小学二年级数学下册(数一数)
- 六年级英语下册上海牛津版教材讲解 U1单词
- 小学英语单词
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 沪教版八年级下册数学练习册一次函数复习题B组(P11)
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
- 三年级英语单词记忆下册(沪教版)第一二单元复习
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 冀教版英语四年级下册第二课
- 苏科版八年级数学下册7.2《统计图的选用》
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理