教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 工程科技> 能源/化工> pb_flow_battery

pb_flow_battery

上传者:包海昆
|
上传时间:2015-04-28
|
次下载

pb_flow_battery

comsol 铅酸液流电池算例

Solved with COMSOL Multiphysics 5.0

Soluble Lead-Acid Redox Flow Battery

Introduction

In a redox flow battery electrochemical energy is stored as redox couples in the

electrolyte, which is stored in tanks outside the electrochemical cell. During operation, electrolyte is pumped through the cell and, due to the electrochemical reactions, the individual concentrations of the active species in the electrolyte are changed. The state of charge of the flow battery is determined by the electrolyte species concentrations, the total flowing electrolyte volume in the system

(tank+pump+hooses+cell), and possibly also by the concentration of solid species on the electrodes. Depending on the cell chemistry the cell can have separated or combined anode and cathode compartments and electrolyte tanks.

Pump

Pb2+

HSO4

Tank

2+PbH+NegativeElectrode(Pb)PositiveElectrode(PbO2/PbO)H

HSO4 +Cell

Figure 1: Working principle of the soluble lead acid flow battery.

1 | SOLUBLE LEAD-ACID REDOX FLOW BATTERY

comsol 铅酸液流电池算例

Solved with COMSOL Multiphysics 5.0

In the soluble lead acid flow battery one electrolyte solution is used. The active

component in the electrolyte is the lead ion that reacts on the electrodes to form solid lead (negative electrode) or lead oxide (positive electrode). The electrode chemistry is similar to a traditional lead-acid battery, with the difference that solid lead sulfonate is not formed in the electrodes.

This model simulates a soluble lead-acid flow battery during an applied

charge-discharge load cycle. The surface chemistry of the positive electrode is modeled by using two different lead oxides and two different positive electrode reactions in the model.

Model Definition

CELL GEOMETRY AND MESH

The electrochemical cell consist of two flat 10 cm square electrodes, placed in parallel with a 12 mm gap in between. The aspect ratio of the cell motivates modeling the cell in 2D. The cell geometry and mesh is shown in Figure 2.Outlet

Negative ElectrodePositive Electrode

Inlet

Figure 2: Geometry and mesh of the electrochemical cell.

2 | SOLUBLE LEAD-ACID REDOX FLOW BATTERY

comsol 铅酸液流电池算例

Solved with COMSOL Multiphysics 5.0

Due to the very high electrical conductivity of the electrodes, the potential gradients in the electrodes are neglected, and the electrodes are not included in the geometry.To handle possible edge effects in the electrolyte, 1 mm regions are added at the inlet and outlet, outside the active electrode region.

A mapped rectangular mesh is used, and boundary meshing is used to resolve the steep gradients in the electrolyte close to the electrode surfaces.

ELECTROLYTE MASS AND CURRENT TRANSPORT EQUATIONS

The electrolyte is based on a mixture of lead methane sulfonate, methane sulfonic acid and water, which in this model is assumed to dissociate into an electrolyte consisting of Pb2+, H+, HSO4--ions dissolved in a bulk solution of zero-charged species (mainly water). Electroneutrality is assumed locally in the electrolyte. The combination of these assumptions allow for the use of Tertiary Current Distribution, Nernst-Planck interface for modeling the electrolyte transport.

The electric potential in the electrodes is assumed to be space independent. The negative electrode is grounded. On the positive electrode, an electrode potential is calculated in order to fulfill a current density condition defined by the load cycle. (Using the Electrolyte-Electrode Boundary Interface boundary condition).

A load cycle of 1 h charge, 20 s rest, 1 h discharge, 20 s is applied twice to the cell. During charge or discharge a constant current density corresponding to a mean current density in the cell 200 A/m2 is applied.

The species fluxes are defined on the electrode surfaces according to the electrode reactions below. An Inflow condition is used at the inlet with the inlet concentrations (cin,Pb2+ and cin,H+) taken from the tank model described below. An Outflow

condition is set at the outlet. All other boundaries are isolated.

Negative Electrode Reaction

On the negative electrode the following electrode reaction occurs:

Pb2++2e Pb(s)- (1)

with the kinetics being described by a Butler-Volmer expression:

FPbF -----η--- –exp –-----η--- expiPb=Fk0cPb2+ RT RT

Where k0+ is a rate constant and cPb2+ is the concentration of lead ions in the

electrolyte. Pb (2)

3 | SOLUBLE LEAD-ACID REDOX FLOW BATTERY

comsol 铅酸液流电池算例

Solved with COMSOL Multiphysics 5.0

As reference electrode we use the negative electrode at reference conditions. The equilibrium potential for the negative electrode is assumed to follow the Nernst equation according to:

RTE0,neg=0V+--------ln(cPb2+)nF (3)

Positive Electrode Main Reaction

The positive electrode main reaction is:

PbO2(s)+4H+2e Pb+-2++2H2O (4)

with the kinetics being described by a Butler-Volmer expression:

iPbO2=Fk0

PbOPbO2cH+FηF----- exp -----η--- –exp –-------- cPb2+---0 RT RT cH+ (5)0where k02 is a rate constant, cH+ is the electrolyte proton concentration and cH+ is the proton reference concentration in the electrolyte at equilibrium.

The positive main reaction has the following equilibrium potential, described by the Nernst Equation:

RT cPb2+ E0,pos=1,8V–--------ln ---------- nF cH+ (6)

Positive Electrode Side Reaction

Multiple types of lead oxides may form on the positive electrode. In this model the following side reaction will be investigated:

PbO2(s)+2H+2e PbO(s)+H2O

where the electrode is kinetics is described by

iPbO=Fk0PbO2 +- (7)FηFηf2bK0cPbOexp -------- –K0cH+cPbO2exp –-------- RT RT (8)

where the overpotential, η, is the same as for the positive electrode main reaction (Equation 6). (The deviation of the equilibrium potential of the side reaction versus the positive main reaction equilibrium potential is controlled by the rate parameters.)

4 | SOLUBLE LEAD-ACID REDOX FLOW BATTERY

comsol 铅酸液流电池算例

Solved with COMSOL Multiphysics 5.0

In Equation 8 K0 and K0 are rate constants, and cPbO and cPbO2 are the surface

concentration of the lead oxides (mol/m2).

TANK MODELfb

The electrolyte flowing out from the cell flows into the tank, undergoes mixing, and is then led into the cell again on the inlet side.

Assuming good mixing in the tank the inlet concentrations, cin,Pb2+ and cin,H+, are governed by the following ODEs:

V---d(c2+)=Lin,Pb

V---dc+)=Lin,H outlet(NPb2+ n)dS– inlet(NPb2+ n)dS (9)

outlet(NH+ n)dS– inlet(NH+ n)dS (10)

Where V is the total volume of flowing electrolyte in the tank, and L is the height of the electrodes. (NPb2+ n and NH+ n denote the molar fluxes of the respective

electrolyte species in the normal direction to the boundary).

The two ODEs are modeled using an ODEs and DAEs interface.

FLUID FLOW EQUATIONS

The fluid is led into the cell at a velocity Vin of 2.3 cm/s. The relevant Reynolds number for the flow between the plates is:

ρVinhRe=----------------≈300μ (11)

where the parameter values for water are used for the density ρ, 1000 kg/m3, and viscosity μ, 10-3 Pa·s. We can assume that the flow is in the laminar regime (Re<2000), and hence the Laminar Flow interface is used to model the fluid flow.

Vin is applied at the inlet, a pressure condition is applied to the outlet, and no slip conditions are applied to the electrode surfaces and channel walls. The induced

convection at the electrode surfaces due to the electrochemical reactions is assumed to be negligible. In this way the flow model is stationary and only solved for once. The convective flow is used as a model input to the Tertiary Current Distribution, Nernst-Planck interface.

5 | SOLUBLE LEAD-ACID REDOX FLOW BATTERY

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
七年级下册外研版英语M8U2reading
第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
沪教版八年级下册数学练习册21.4(1)无理方程P18
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
沪教版八年级下次数学练习册21.4(2)无理方程P19
外研版英语七年级下册module1unit3名词性物主代词讲解
外研版英语三起5年级下册(14版)Module3 Unit2
外研版英语三起5年级下册(14版)Module3 Unit1
化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
河南省名校课堂七年级下册英语第一课(2020年2月10日)
冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
《小学数学二年级下册》第二单元测试题讲解
外研版英语七年级下册module3 unit2第二课时
外研版英语七年级下册module3 unit1第二课时
小学英语单词
第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
人教版历史八年级下册第一课《中华人民共和国成立》
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
三年级英语单词记忆下册(沪教版)第一二单元复习
北师大版数学四年级下册3.4包装
外研版英语三起6年级下册(14版)Module3 Unit2
七年级英语下册 上海牛津版 Unit9
冀教版小学英语五年级下册lesson2教学视频(2)
北师大版数学 四年级下册 第三单元 第二节 小数点搬家
沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
沪教版牛津小学英语(深圳用)五年级下册 Unit 1