Did a proto-ocean原型盆地
上传者:葛建新|上传时间:2015-05-07|密次下载
Did a proto-ocean原型盆地
Did a proto-ocean basin form along the southeastern Rae
cratonic margin? Evidence from U-Pb geochronology,
geochemistry (Sm-Nd and whole-rock), and stratigraphy of the Paleoproterozoic Piling Group, northern Canada
Natasha Wodickat, Marc R. St-Onge, David Corrigan, David J. Scott§, and Joseph B. Whalen Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada
ABSTRACT fragmented into small crustal block(s) and
narrow zone(s) of incipient oceanic crust farther The Paleoproterozoic Piling Group along outboard of the Piling Group basin. Rapid the southeastern Rae margin, northern Canada, subsidence of the southeastern Rae margin is characterized by thick, deep marine turbidite ensued, leading to deposition of euxinic (Astarte deposits not observed in time- equivalent, River formation) and overlying turbiditic strata intracratonic basin units further southwest. (Longstaff Bluff formation). The post-ca. 1915 Models invoked to explain this feature include Ma northern tur- biditic sedimentary units were development of a full-ocean, back-arc, or likely derived from a thoroughly mixed, proto-ocean basin followed by turbidite two-component source with possible input from sedimentation. We present new and existing the Snowbird tectonic zone and Bravo Lake U-Pb geochronological, Nd isotope, geochemical, formation, whereas the post-ca. 1930 Ma and stratigraphic evidence that support a southern turbidite unit may have been sourced proto-ocean basin model, and we explore the from the Meta Incognita microcontinent, pres-events leading to the formation and closure of ently exposed further south. We favor a rift such a rift basin during the middle margin over a foreland basin setting for the Paleoproterozoic. Sedimentation initiated deposition of the northern turbidite deposits. largely after ca. 2160 Ma with deposition of Subsequent mantle upwelling associated with craton-derived, shallow marine siliciclastic incipient ocean formation may have triggered strata (Dewar Lakes formation). Continued melting of highly thinned continental crust extension resulted in accumulation of resulting in emplacement of late- stage, ca. 1897 south-facing carbonate beds (Flint Lake Ma, contaminated rapakivi granite and highly formation) and likely concomitant, arclike differentiated mafic sills. Our results are most tholeiitic to picritic volcanism and voluminous consistent, albeit not exclusively, with the much volcaniclastic sedimentation (lower Bravo Lake formation) farther outboard at ca. debated model of asthenospheric upwelling and
1980 Ma. Accumulation of intrabasinal incipient rifting along the Rae-Hearne
siliciclastic strata above lower Bravo Lake boundary farther southwest at ca. 1.9 Ga. Later formation rocks may mark a hiatus in mafic- accretion of the Meta Incognita microcontinent ultramafic magmatism. By ca. 1923 Ma, upper Bravo Lake formation, within-plate- type led to basin closure and development of a
alkaline sill emplacement and volcanism north-verging fold-and-thrust belt after ca. 1883 occurred within highly extended crust. The Ma. oceanic island basalt-like signatures of the Bravo Lake formation rocks (but lack of depleted, mid-ocean-ridge basalt-type INTRODUCTION
compositions) suggest that by this time the Sedimentary basins form in most tectonic thinned Rae continental lithosphere had settings: divergent, convergent, or transform.
fE-mail: Natasha.Wodicka@NRCan-RNCan.gc.ca Understanding the processes related to basin §Current address: Canadian Polar Commission, 360 formation, evolution, and destruction is therefore Albert Street, Ottawa, Ontario K1R 7X7, Canada important for deciphering the tectonic development
of associated continental or oceanic crust. In
Precambrian sedimentary succes
GSA Bulletin; November/December 2014; v. 126; no. 11/12; p. 1625-1653; doi: 10.1130/B31028.1; 16 figures; 1 table; Data Repository item 2014252; published online 16 July 2014.
For permission to copy, contact
© 2014 Geological Society of America sions, deciphering the age, character, tectonic evolution, and provenance record of a sedimentary basin can be particularly challenging because of post-depositional metamorphism and deformation that commonly obscure primary sedimentary features, and the lack of chronostratigraphic control. Despite these challenges, studies integrating detrital zircon geochronology with other tools, including sequence stratigraphy, isotope information, and geochemical characteristics, have been applied effectively in identifying the sources and tectonic settings of ancient sedimentary basins (e.g., Ross et al., 2005; Schulz et al., 2008; Collo et al., 2009; Rainbird et al., 2010). During the Paleoproterozoic, sedimentary and volcanic sequences accumulated in a number of sedimentary basins across the Churchill Province (Nunavut, Canada) in response to breakup of the supercraton Kenorland and assembly of the Nuna supercontinent (e.g., Williams et al., 1991; Aspler and Chiarenzelli, 1998; Rainbird et al., 2010). The Piling Group on Baffin Island (Fig. 1) forms part of the basal Paleoproterozoic supracrustal succession that overlies the Rae craton (e.g., Rainbird et al., 2010). However, unlike time-correlative units on mainland Nunavut (e.g., Amer, Ketyet River, Chantrey, and Montresor groups), which record the development of an intracratonic basin (Rainbird et al., 2010), the Piling Group contains thicker and more extensive deep marine deposits that suggest continental separation as first proposed by Morgan et al. (1975, 1976). Although there is broad agreement that the Piling Group basin once faced an ocean along the southeastern Rae margin (e.g., Corrigan et al., 2001, 2009; Scott et al., 2003; St-Onge et al., 2005, 2009), the nature, age, and tectonic evolution of the basin have not been fully documented. In this contribution, we present new, and synthesize available, field, stratigraphic, U-Pb1625
Wodicka et al.
enozoic I Paleogen
crust with Neoarchean component
Archean I I Cratons
e basalt
Paleozoic
Figure 1. Simplified geological map of the Canadian Shield (modified from Corrigan et al. [2009]; subsurface units in the western part of the shield after Ross et al. [1991], and distribution of Hoare Bay Group on Baffin Island after Sanborn-Barrie and Young [2013] and Sanborn-Barrie et al. [2013]) and western Greenland (modified from Escher and Pulvertaft [1995]). Areas investigated and sampled in this study are denoted by the black box (see Fig. 2) and the star (LB—Longstaff Bluff formation sample LB-05). The map also shows the location of Paleoproterozoic cover sequences on the Rae craton, including the Piling (P), Penrhyn (PN), Chantrey (C), Montresor (M), Amer (A), Ketyet River (KR), Thluicho Lake (TL), and Hoare Bay (HB) groups in northern Canada and the Karrat (K) and Anap nuna (An) groups in western Greenland. Greenland is shown in a pre-drift position with respect to Baffin Island and mainland Canada, following the reconstruction of Roest and Srivastava (1989). Other abbreviations: CI—Chesterfield Inlet segment; CS—Cumberland Sound; LH—Lake Harbour Group; QMB—Queen Maud block; SL—Snowbird Lake segment; STZ—Snowbird tectonic zone; TTMZ—Taltson-Thelon magmatic zone. Inset map shows location of study area in North America.
I I Carbonate platforms
Paleo- to Mesoproterozoic
I I Grenville orogen
I I Anorthositic to granitic plutons I I Intracratonic basins
Paleoproterozoic Granitic batholiths HB Arc-related rocks / oceanic crust
An Mafic volcanic rocks
l l Ca. 2.45-1.88 Ga supracrustal sequences 2.0-1.8 Ga
magmatic belts (e.g., Taltson-Thelon, Great Bear)
■ Dominantly early Paleoproterozoic
geochronological, geochemical, and Nd isotopic data that (1) help constrain the age and provenance of a stratigraphically representative suite of samples from the Piling Group, and (2) allow an improved understanding of the tectonic evolution of the southeastern Rae craton margin during the middle Paleoproterozoic (Figs. 1 and 2). In particular, we explore questions related to the events leading to the formation and eventual closure of a proto-ocean basin, if once present, along this segment of the Rae margin. The Piling Group is ideal for a provenance study because it is widely and well exposed (>45,000 km2) at relat ively low metamorphic grades (e.g., St-Onge et al.,
2005; Gagne et al., 2009). Our results also GEOLOGICAL SETTING highlight the exceptional value of integrating
The Paleoproterozoic Piling Group on central
various observational and analytical tools in the
Baffin Island, Nunavut, Canada (Fig. 1),
study of ancient sedimentary basins.
comprises shallow-water siliciclastic-carbonate strata, mafic-ultramafic volcanic rocks, and deep-water basinal strata (e.g., Morgan et al., 1976; Henderson et al., 1979; Henderson and Tippett, 1980; Tippett, 1984a; Jackson, 2000; Corrigan et al., 2001; Scott et al., 2002, 2003). It is generally regarded as a continental margin succession (Morgan et al., 1975, 1976) originally deposited on the southeastern margin of the Archean Rae craton and subsequently deformed and metamorphosed during the ca. 1.92-1.80 Ga
1626
Geological Society of America Bulletin, November/December 2014
Did a proto-ocean basin form along the southeastern Rae margin?
Trans-Hudson orogen (Corrigan et al., 2001; Scott it has been correlated with the Penrhyn Group on et al., 2002; St-Onge et al., 2005, and references Melville Peninsula and the Karrat Group in therein). Traditionally,western Greenland (Fig. 1; e.g., Jackson and
Taylor, 1972; Escher and Pulvertaft, 1976; Taylor,
1982; Henderson and Pulvertaft, 1987). More
recent work suggests that it forms part of an even
more extensive cover sequence on the Rae craton,
with stratigraphic correlatives extending from the
western Churchill Province on mainland Nunavut
(e.g., Amer, Ketyet River, Chantrey, and
Montresor groups; Rainbird et al., 2010), across
Baffin Island (Hoare Bay Group; St-Onge et al.,
2009), to western Greenland (Anap nuna Group;
Garde and Steenfelt, 1999).
On Baffin Island, the Rae craton comprises ca.
2900-2775 ± 2 Ma granodioritic to monzo-
granitic orthogneiss and temporally distinct
volcano-sedimentary sequences, namely the ca.
Geological Society of America Bulletin, November/December 2014 1627
76°W 70°N
Wodicka et al.
70°W
70°N
DS37A
Figure 2. Generalized bedrock geology of central Baffin Island (modified from St-Onge et al., 2005). Locations of samples for U-Pb zircon geochronology are indicated by black circles for detrital zircon samples and stars for igneous zircon samples. Mineral abbreviations: And—andalusite; Bt—biotite; Crd—Cordierite; Grt—Garnet; Kfs—K-feldspar; Ms—Muscovite; Sil—Sillimanite.
Neoproterozoic
Franklin dikes Paleoproterozoic
Bt monzogranite Leucocratic
monzogranite Cumberland batholith Rapakivi monzogranite-granodiorite Piling Group
Longstaff Bluff fm (Grt-Crd-Kfs-melt pod) Longstaff Bluff fm (Bt-Sil-Kfs土melt pod)
Longstaff Bluff fm (Bt-Ms-Crd土And) Longstaff Bluff fm (Bt-Ms土Grt)
Astarte River formation Bravo Lake formation
Flint Lake formation I I Dewar Lakes formation
D336
|D335|
C325
Nadluard/uk
Lake
H334
Archean
Hbl-Bt土Cpx gabbro Bt土Hbl monzogranite Eqe
C323
MSO62
Wordie
Bay greenstone belt
Psammite, semipelite; amphibolite
|
| Quartzofeldspathic orthogneiss
▼ ▼ ▼ Dewar Lakes - Bravo Lake thrust fault
Say
10
Oblique-slip fault
10
20
30 40
50 km
68°N
2829 Ma Mary River Group and the younger ca.
2740-2725 Ma Eqe Bay and Isotorq greenstone belts, all of which are intruded by 2726 +3/-2-2658 +16/-14 Ma granodioritic to mon- zogranitic and rare tonalitic plutonic rocks (Figs. 1 and 2; Jackson et al., 1990; Scott and de Kemp, 1999; Jackson, 2000; Wodicka et al., 2002; Bethune and Scammell, 2003; Scott et al., 2003; Young et al., 2004, 2007; St-Onge et al., 2005; Johns and Young, 2006). Various felsicplutonic rocks, ranging in age from 1897 +7/-4 to
ca. 1805 Ma and including the northernmost components of the post-accretion Cumberland batholith, intrude the Piling Group strata and Archean Rae craton rocks (Jackson et al., 1990; Henderson and Henderson, 1994; Wodicka and Scott, 1997; Scott and Wodicka, 1998; Scott, 1999; Wodicka et al., 2002; this study; Bethune and Scammell, 2003; Gagne et al., 2009; Whalen et al., 2010). To the south lies the Meta Incognita micro-continent (Fig. 1; St-Onge et al., 2000), which comprises dominantly ca. 2680-1950 Ma orthogneiss, a heterogeneous volcanic-bearing supracrustal assemblage (Schooner Harbour sequence), a clastic-carbonate shelf succession (the < 2.01 Ga > 1.90 Ga Lake Harbour Group), a structurally overlying succession of feldspathic quartzite and pelite (Blandford Bay assemblage), and intrusive monzogranite to
1626
Geological Society of America Bulletin, November/December 2014
Wodicka et al.
lesser quartz diorite plutons of the 1.865-1.847 Ga Bay Group; Corrigan et al., 2009) or to the Cumberland batholith and younger 1.841.82 Ga southeast through Cumberland Sound (St-Onge et granitoid plutons (e.g., Scott, 1997; Scott and al., 2006). Wodicka, 1998; Scott et al., 2002; Wodicka et al.,
2010; St-Onge et al., 2009; Whalen et al., 2010). Stratigraphy of the Piling Group St-Onge et al. (2006) proposed that accretion of the
The Piling Group is divided into five forma-Meta Incognita microcontinent to the southeastern margin of the Rae craton occurred between 1883 ± tions (Morgan, 1983; Tippett, 1984a), which 5 and 1865 +4/-2 Ma. The trace and precise nature comprise, in ascending stratigraphic order, the of the boundary (Baffin suture; St-Onge et al., 2006) Dewar Lakes, Flint Lake and Bravo Lake, Astarte between the two crustal blocks are uncertain, River, and Longstaff Bluff formations (Figs. 2 and owing largely to emplacement of the voluminous, 3). The Dewar Lakes formation can be subdivided post-accretion Cumberland batholith. Based into three members (Scott et al., 2003), the lowest primarily on the distribution of the Piling Group of which comprises thinly bedded, muscovite-rich versus Lake Harbour Group, it is tentatively quartzite, gray- to pinkweathering psammite, and situated in the central part of Baffin Island feldspathic quartzite. The overlying, and by far the (St-Onge et al., 2006, 2009; Fig. 1). Its trajectory most widespread, middle member comprises further east is even more cryptic, extending either medium to thickly bedded, sillimanite-rich to the east-northeast across Cumberland Peninsula quartzite with rare mica and is characterized by
dominantly southward- directed cross bedding. (northwest of the Hoare
The upper member is
Paleoproterozoic monzogranite
FT7! Turbidite |
| Pelite, semipelite
Volcaniclastic rock 1=1
D336
Mafic-ultra mafic sill A Mafic volcanic rock Carbonate I 1
MSO35 Quartzite
Archean monzogranite lv^>l Archean gneiss
DS42A
? ★
detrital zircon sample
igneous zircon sample
C325
LB-05
C321 C323
内容需要下载文档才能查看H334
D537A
N706? D335
内容需要下载文档才能查看D330
Bravo Lake formation
Figure 3. Generalized stratigraphic column for the Piling Group showing approximate position of analyzed samples. In the absence of marker horizons within the turbidite sequence, the stratigraphic position of samples DS42A, MSO35, and D336 was estimated on the basis of their location within the regional synformal structural basin (Fig. 2). All three samples are from the northern Longstaff Bluff formation. The stratigraphic height of the southern Longstaff Bluff formation sample LB-05 (Fig. 1) (shown here in a lower position for illustrative purposes) is unknown. See text for further details.
composed of thin beds of quartzite to psam- mite and rusty semipelite to pelite. The overall thickness of the Dewar Lakes formation varies significantly from less than a meter to locally greater than ?1000 m. Thickness variability may reflect primary sedimentary depocenters (Tippett, 1984a; Jackson, 2000; Scott et al., 2003). Basal quartzite and rare psammite of the lower Dewar Lakes formation are in stratigraphic (locally reworked) contact with underlying Archean orthogneissic and plutonic rocks, and the formation as a whole is interpreted as a clastic sheet deposited on Rae basement. The dominance of quartz over feldspar and rock fragments throughout the formation suggests a relatively high degree of sedimentological maturity (Tippett, 1984a). Most of the Dewar Lakes formation was likely deposited in a shallow marine environment (e.g., Tippett, 1984a; de Kemp et al., 2002).
White- to gray-weathering dolostone, marble, and calc-silicate strata of the Flint Lake formation are interlayered with minor to rare semipelite, pelite, quartzite, iron formation, and chert, and stratigraphically overlie the upper member of the Dewar Lakes formation (Morgan et al., 1976; Corrigan et al., 2001; Scott et al., 2002; St-Onge et al., 2005). The exposed thickness of this formation varies considerably both along and across strike, from several meters to 500-1000 m in the thickest exposures. The overall decrease in carbonate material toward the south led Scott et al. (2002, 2003) to suggest that the Flint Lake formation originally formed a relatively narrow (75-100 km wide) southfacing carbonate shelf adjacent and parallel to the southeastern edge of the Rae craton, with significant along-strike variation in primary thickness.
The Bravo Lake formation forms a nearly continuous, 120-km-long east-west-trending mafic volcanic belt in the southern part of the Piling structural basin (Fig. 2). Like the Flint Lake formation, it conformably overlies the siliciclastic rocks of the upper Dewar Lakes formation, suggesting that the lithologically distinct carbonate and volcanic sequences occupy an equivalent stratigraphic position within the Piling Group (Fig. 3; de Kemp et al., 2002; Scott et al., 2003). Based on lithostratigraphic and structural considerations, the Bravo Lake formation, and in places the Dewar Lakes formation, are interpreted to have been tectonically juxtaposed against the younger Longstaff Bluff formation across a north- to northwest-directed thrust fault (Fig. 2; Tippett, 1984a; Corrigan et al., 2001; de Kemp et al., 2002; Stacey and Pattison, 2003). The Bravo Lake formation has an estimated thickness of 1-2.5 km and can be subdivided into two sequences (Modeland
1628 Geological Society of America Bulletin, November/December 2014
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 幽默的行走在教育的路上 教育箴言讲案
- 一次作业doc
- 论_意象_美术教育
- 战胜自己的懒惰
- 土木工程概论复习题(第二版)
- 基于职业能力培养的高职机械专业基础课群教学改革的研究与实践
- 重奖激励教学勿止步宣传效应
- 师生礼仪与教育生活
- 浅析新课改对语文教师素质的要求
- 传统中国教育与权威人格
- 29782自考语文教学研究
- 2014远程培训考核要求
- 教师要拥有专业素养
- 德育试题(三)
- 2012年6月计算机组装与维修期末练习
- 移动通信复习资料
- 长沙教育学院教师培训改革与创新发展纪实
- 曾老师的中国梦
- 2012年6月计算机组装与维修期末练习答案
- 朱炳祥论汉字与汉语
- 概率论与数理统计习题-含考试题目
- 环境艺术设计专业项目式教学
- 山东高校教师资格综合卷复习资料及答案(仅供参考)
- 2015山东高校心理学排版
- 2014年度影响教师的100本书
- 装载机培训考试卷(简1)答案
- 银川海派留学:七种申请方式助你拿下加拿大留学
- 用爱心打开学生心灵的窗户
- 重奖会让大学教师爱上讲台
- 踏上专业阅读之路
网友关注视频
- 冀教版小学英语四年级下册Lesson2授课视频
- 七年级英语下册 上海牛津版 Unit5
- 第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
- 七年级下册外研版英语M8U2reading
- 化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
- 《空中课堂》二年级下册 数学第一单元第1课时
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
- 化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 人教版二年级下册数学
- 冀教版英语三年级下册第二课
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 外研版英语三起6年级下册(14版)Module3 Unit2
- 七年级英语下册 上海牛津版 Unit9
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 六年级英语下册上海牛津版教材讲解 U1单词
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
- 冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理