Influence of soil non-linearity on the dynamic response of high-speed railway tracks
上传者:苗瑜|上传时间:2015-05-07|密次下载
Influence of soil non-linearity on the dynamic response of high-speed railway tracks
2.5D维有限元经典文献,把等效线性化模型应用到其中。
内容需要下载文档才能查看 内容需要下载文档才能查看SoilDynamicsandEarthquakeEngineering30(2010)221–235
ContentslistsavailableatScienceDirect
SoilDynamicsandEarthquakeEngineering
journalhomepage:http://wendang.chazidian.com/locate/soildyn
In?uenceofsoilnon-linearityonthedynamicresponseofhigh-speedrailwaytracks
´nioSilvaCardosoa,AndersBodarebPedroAlvesCostaa,RuiCalc-adaa,n,Anto
ab
FacultyofEngineeringoftheUniversityofPorto,RuaDr.RobertoFrias,4200-465Porto,Portugal
GeoRisk&VibrationScandinaviaAB,SolnaTorg13,3tr-17145Solna,Sweden
articleinfo
Articlehistory:
Received14August2009Receivedinrevisedform19November2009
Accepted20November2009Keywords:
High-speedrailwaytrackSoftsoil
Equivalentlinearanalysis2.5D?niteelementmethodFrequency-domainanalysis
abstract
Themainobjectivesofthispaperaretheevaluationoftherelevanceofthenon-linearbehaviourofthesoilonthetrackresponseandthevalidationofamethodology,whichincludestheseeffectsthroughanequivalentlinearanalysis.Theproposednumericalmodelisbasedon2.5D?nite/in?niteelementsmethod,coupledwithaniterativeprocedureinordertoobtainanagreementbetweenthestrainlevelsandthedynamicpropertiesofthematerials.Inordertovalidatethemodel,thecasestudyofLedsgardwassimulated,andtheexperimentalandnumericalresultsofdisplacementsofthetrackwerecompared,consideringseveralcirculationspeedsfortheX2000train.Fromtheresults,itispossibletorecognizethatthestiffnessdegradation,functionofthestrainlevel,playsarelevantroleforthecaseofhigh-speedrailwaylinesonsoftground.Moreover,thesimulationsdevelopedwiththeproposedmethodologyprovidedsimilarresultstothoseobserved,independentlyofthetrainspeed,contrarytowhatwasobtainedwhentheelasticlinearmodelwasused.
&2009ElsevierLtd.Allrightsreserved.
1.Introduction
Theassessmentofvibrationsatandalongsiderailwaytracksisbecomingasubjectofprimeimportance,mainlyduetotheincreasingnumberofhigh-speedrailwaylinesbeingbuiltthroughoutEuropeandEastAsia.Whenthetrackcrossesregionsofsoftsoils,theassessmentofthevibrationsinducedbytraf?cisparticularlyimportant.Inthesecases,thisissuehasnotonlyenvironmentalimplications,relatedwithnuisancetoinhabitantsofbuildingsinthevicinityofhigh-speedlines,butalsostructuralconsequences,sincetheampli?cationofthedynamicresponseofthetrackmaycompromiseitsstabilityandsafety.
http://wendang.chazidian.comuallyadistinctionismadebetweenquasi-staticanddynamicexcitationmechanisms[1,2].Thedynamicexcitation,ofgreatimportanceinenvironmentalvibrationassessment,iscausedbythetrain–trackinteractionduetoseveralmechanismsthatinduceverticalaccelerationontherolling-stock[3].Ontheotherhand,thequasi-staticexcitationisrelatedwiththemagnitudeofthemovingloadscorrespondingtothedistributionofthetrainweightbyitsaxles.Whenthetrainspeedislowincomparisonwiththecriticalphasevelocityofthetrack-groundsystem(minimumphasevelocityofthe1stRayleighmodeofthesoilandembankmentpro?leatthesite[4])the
Correspondingauthor.
E-mailaddresses:pacosta@fe.up.pt(P.AlvesCosta),ruiabc@fe.up.pt(R.Calc-ada),scardoso@fe.up.pt(A.SilvaCardoso),bodare@georisk.se(A.Bodare).0267-7261/$-seefrontmatter&2009ElsevierLtd.Allrightsreserved.doi:10.1016/j.soildyn.2009.11.002
n
quasi-staticexcitationpresentsareducedcontributiontotheresponseatthefree-?eld,althoughthetrackresponseisconditionedbythismechanism.However,theimportanceofthequasi-staticexcitationincreaseswhenthetrackcrossesregionsofsoftsoilsandthetrainspeedreachesthephasevelocityofthesystem.Inthesecases,highampli?cationsareidenti?ed[3,5],whicharenotcompatiblewiththeassumptionofsmall-strainsintheground,asusuallyconsideredintheanalysisofvibrationsinducedbytraf?c.
Duringthecurrentdecade,fewpredictionmodelsweredevelopedwithdifferentdegreesofcomplexityandaccuracy.However,inauthors’knowledge,almostalltheanalysesdevel-opeduntilnowwerebasedonelasto-dynamictheory,undertheassumptionthatstrainsinducedbythetraf?careboundedintherangeofverysmallstrains,thusnotinvolvingsoilstiffnessdegradation.
Thispaperisfocusedonthepredictionofthedynamicresponseofthetrack,includingtheeffectsofsoilnon-linearity.Intheauthors’opinion,theeffectofstiffnessdegradationwiththestrainlevelhasnotbeenappropriatelytakenintoaccountyet.Inthiscontext,thefewexperimentalcasestudiesperformeduntilnow,whereseveralmeasurementshavebeenobtained,areveryusefultoidentifythemaintrendsoftheproblemandtocalibrateandvalidatethenumericalmodels.Oneofthosecasesisthewell-knowncaseofLedsgard,atSweden,whereseveraltestswereperformedfordistincttrainspeeds,someofthemclosetothecriticalspeedofthesystem[6,7].Thiscasestudyhasbeenusedasbenchmarkbyseveralresearchers[4,7–11].Inthestudycon-ductedbyMadshusandKaynia[4]andalsobyHall[7],the
2.5D维有限元经典文献,把等效线性化模型应用到其中。
222
P.AlvesCostaetal./SoilDynamicsandEarthquakeEngineering30(2010)221–235
authorsrecognizedtherelevanceoftheconsiderationofthenon-linearbehaviourofthesoilandtriedtocontemplatethiseffectusingasimpli?edapproach.
Thestudiespresentedinthispaperrepresentanadvanceinknowledgeinthis?eldofresearch,namelywhencomparedwiththestudiespresentedbyMadshusandKaynia[http://wendang.chazidian.comparingbothstudies,severalimprovementscanbepointedout:(i)thegroundismodelledbya2.5D?niteelementapproach;ina2.5D?niteelementapproach,the3Dresponseofthegroundiscomputedassumingthatthestructureisinvariantalongthedevelopmentdirectionofthetrack;(ii)intheproposedapproach,thetrackandtheembankmentaresimulatedattendingtotheirspeci?ccharacteristics;theembankment,aswellastheground,issimulatedbymeansof2.5D?niteelements,whichallowfortheinclusionoftherealgeometryoftheembankmentanditsmechanicalbehaviour;(iii)thenon-lineareffectsarehandledintheproposedmodelthrougha‘‘true’’equivalentlinearanalysis,i.e.,theconvergenceisobtainedelement-by-element,whichinducesatransverseinhomogeneityinthegroundduetothefactthatthenon-lineareffectsaremorepronouncedalongtherailwaytrackthanatthefar-?eld.Inthefollowingsections,themaincharacteristicsoftheproposedmodelareoutlined.
Followingacommonstrategyforresolutionofsoildynamicsproblems,themodelpresentedinthispaperconsidersthenon-linearsoilbehaviourthroughtheequivalentlinearapproach,whichconstitutesacompromiseoptionbetweenaccuracyandcomplexity.Afteridentifyingthemechanismsofvibrationgen-erationandtheirimportancefortheresponseofrailwaytrackanditssurroundingsoilmass,itisassumed,forthepresentcasestudy,thatthemainmechanismofvibrationisquasi-static,forthereasonspointedoutabove.Theextensionofthemodeltowardsincludingthedynamicexcitationisasimplestepfromthepointofviewoftheformulation;however,thecomputationaleffortisdrasticallyincreased.
Asinothernumericalmodels,thepresentmodelisbasedonthe‘‘two-and-a-half’’dimensionconcept.Thismethodologyleadstoanef?cientcomputationscheme,usingFouriertransformswithrespecttothespatialcoordinatealongthetrack.Thisisthemainadvantageofthiskindofmodelsbutitisalsoitsmaindrawback,sinceitimpliestheassumptionofinvariabilityofgeometryandofmechanicalpropertiesalongthatdirection.Concerningthenumericalmethoditself,the2.5D?niteelement(2.5DFEM)formulationadoptedissimilartotheoneusedbyMuller[12],YangandHung[13]andShengetal.[14].Toavoidspuriousre?ectionsonarti?cialboundaries,2.5Din?niteelements(2.5DIEM)areused.ThismodelismoreversatilethanthemodelsbasedonGreen’sfunctionsconcept,sinceitallowsfortheconsiderationofanarbitrarycross-sectionforthetrack/groundsystem.
The2.5DFEM–IEMiscoupledwithaniterative,element-by-element,methodology;asaresult,successivelinearelasticequivalentanalysesareperformed,wherethestiffnesspropertiesareadjustedtomatchthemechanicalpropertiesandthestrainlevel,untiltheconvergencecriterionisreached.
Inthepresentstudy,theresultsofseveralsimulationsarecomparedwith?eldmeasurementsandthein?uenceofthenon-linearityofthesoilontheresponseofthetrackisanalyzedanddiscussed.
2.Numericalmodel
2.1.2.5D?niteelementmethodformodellingboundedregionsTheapplicationofthe2.5D?niteelementsiscon?nedto
structureswhichcanbeassumedtohavein?nitedevelopmentandinvariantpropertiesinonedirection,asillustratedinFig.1.In
thesecasesthestructureis2D,sincethecross-sectionremainsinvariableinthelongitudinaldirection,buttheloadingis3D.Themainconceptbehindtheproposedsolutiontotheproblemistheuseofamethodwhichisbetweenthetwo-dimensionalandthethree-dimensionaldomain.Thismethodwas?rstlyproposedbyHwangandLysmer[15]forthestudyofundergroundstructuresundertravellingseismicwaves.Subsequently,themethodhasbeenappliedbyafewresearcherstothestudyofvibrationsinducedbytraf?c.Inthis?eld,specialattentionshouldbededicatedtotheworksofMuller[12],YangandHung[13],Shengetal.[14]andAlvesCosta[16].
Assumingthattheresponseofthestructureislinear,theanalysiscanbecarriedoutonthewavenumber/frequencydomain.Allthevariables,i.e.,loads(action)anddisplacements(response),mustbetransformedtothewavenumber/frequencydomainbymeansofadoubleFouriertransform,relatedwiththedirectionalongthetrack(xdirection)andwithtime.TransformedquantitieswillbedenotedasfunctionsoftheFourierimagesofxandt,de?nedaswavenumberandfrequency,arerepresentedbyk1ando,respectively.
Followingtheusualstepsofthe?niteelementprocedure,namelythestrongandweakformulations,thefollowingequili-briumequationcanbederivedforanypointofathree-dimensionaldomain:Z
desdVþZ
dur@2uiðx;tÞ
dVZ
dupdSð1Þ
VV
@t2¼
S
wheredeisthevirtualstrain?eld,srepresentsthestress?eld,du
isthevirtualdisplacement?eld,uisthedisplacement?eld,risthemassdensityandprepresentstheappliedloads.
Afterthetransformation,thecross-sectionofthedomainremainsontheuntransformeddomainandisdiscretizedinto?niteelements.ThisapproachenablestorewriteEq.(1)intermsofnodalvariables.
Inordertoapplytheconceptofvirtualworkonthetransformeddomain,someconsiderationsmustbeattended,namelytheParserval’stheorem[12,17,18]:Z
dfðxÞpðxÞdx¼
Z
dfðÀk1Þpðk1Þdk1
ð2Þ
Eq.(2)providestheformulationoftheprincipleofvirtualworksinthetransformeddomain.ConsideringEq.(1),thevirtualworkoftheinternalstressesandinertialforcesinthetransformeddomainisgivenby,respectively:Z
desdV¼
Z
duTÞ
ZZ
BTðÀk1ÞDBðk1Þdydzunðk1;oÞdk1
V
knðÀk1;
o1
z
y
ð3
内容需要下载文档才能查看Þ
Fig.1.In?niteandinvariantstructureinonedirection(after[13]).
2.5D维有限元经典文献,把等效线性化模型应用到其中。
P.AlvesCostaetal./SoilDynamicsandEarthquakeEngineering30(2010)221–235
223
Z
dur@2uðx;tÞZ
@tdV¼Ào2
duTZ
1;
oÞ
ZNTrNdydzunðk1;oÞdk1
V
knðÀk1
z
y
ð4Þ
whereBisthematrixwiththederivativesoftheshapefunctions;Nistheshapefunctionmatrix;Disthestrain–stressmatrix;unisthevectorofnodaldisplacements(inthetransformeddomain).
ThevirtualworkdonebytheexternalloadsiscomputedtakingadvantageofthefactthatthegeometryisonlydiscretizedontheZYplane.So,consideringacoordinates,paralleltotheedgeoftheelementwheretractionisapplied,thevirtualworkdevelopedbytheloadsystemisgivenby
Z
dupdS¼
Z
duTZ
T
Z
1;oÞdsdk1¼
duTÞpnðk1;oÞdk1
S
knðÀk1;oÞNpðk1
s
knðÀk11
ð5Þ
ReplacingandrearrangingEqs.(3)–(5)onEq.(1)yields
??ZZBTðÀk1ÞDBðk1ÞdydzÀo2ZZ
NTrNdydz unðk1;oÞ¼pnðk1;oÞ
z
y
z
y
ð6Þ
Adoptingtheclassic?niteelementnotation,resultson½K ¼ZZBTðÀk1ÞDBðk1Þdydz
ð7Þ
z
y
and½M ¼
ZZ
NTrNdydz
ð8Þ
z
y
where[K]and[M]arethestiffnessandmassmatrices,respectively.
Asusual,thematrix[B]isderivedfromtheproductofthedifferentialoperatormatrix[L](onthetransformeddomain)withthematrix[N].Sincethedirectionxistransformedtothewavenumberdomain,thederivativesinordertok1areanalyti-callycomputed,aspresentedinthefollowingexpression:
2@3T6ik@1
00607½L ¼666@@760
6@y0ik1@z0777ð9Þ
40
@@7@z
ik7@y
1
5Dampingisintroducedbyahystereticdampingmodel,i.e.,consideringcomplexstiffnessparameters.
Thecomputationalef?ciencycanbeimprovedbydividingmatrix[K]intosub-matrices,independentofthewavenumberandfrequency.Thisstepisdevelopedconsideringthematrix[B]astheresultoftheadditionoftwomatrices,wherethenumericalandanalyticalderivativesareseparated.Inthatcase,Eq.(6)canbereplacedby
ð½K 1þik1½K 2þk22
1½K 3Ào½M Þunðk1Þ¼pnðk1Þ
ð10Þ
Theglobalsystemofequationsiscompletelyde?nedaftertheassemblyoftheindividualmatricesofeachelementandthede?nitionoftheNewmanandDiricheletboundaryconditions.Theresultsobtainedaftersolvingthesystemofequationsareinthetransformeddomain,requiringadoubleinverseFouriertransform,inordertode?neasolutioninthespace/timedomain.
Theadvantageofthemethodinrelationtothefullythree-dimensional?niteelementmethodisevident:insteadofsolvingasystemofequationswithahighnumberofdegreesoffreedom,asmallersystemofequationsissolvedmanytimes,correspondingtoarangeofwavenumbers.Thisprocedurerepresentsagreatreductionofcomputationaltime.
2.2.Modellingunboundedregionsthroughin?niteelementsManycivilengineeringstructurescanbeidealizedasresting
ontheground,which,forpracticalpurposes,canbeconsideredunbounded.Forstaticproblems,thecontributionofthegroundisre?ectedintermsofstiffness,soitispossibletotruncatethedomainatasuf?cientlyfardistancewherethegrounddeforma-tionissosmallthatitcanbeneglected.However,indynamicanalyses,thegroundmodelshouldful?ltherequirementsofrepresentingthedynamicgroundstiffnessbutalsotheradiationconditions.Thelatterrequirementdemandsaspecialtreatmentoftheboundaryconditions,sincespuriousre?ectionofthewavesattheboundariesshouldnotoccur.Arigorousapproachcanbereachedusing?niteelementstorepresentthenear-?elddomainandboundaryelementstosimulatethefar-?elddomain.Thisapproachhasbeenusedinthecontextof2.5Dmodellingbyseveralresearcherswithsatisfactoryresults[12–14,16].Anotherapproachconsistsontheuseofabsorbingboundaryconditionsorin?niteelements.
Inthispaper,theauthorsoptedforusingin?niteelementsduetothesimplicityofitsnumericalimplementation.Inthein?niteelementsformulation,similarlytothe?niteelementsformula-tion,the?eldvariableisapproximatedbyshapefunctions.However,theshapefunctionsforthein?niteelementsmustbemoreelaborated,sincethesehavetorepresenta‘‘reasonable’’behaviourofthe?eldvariabletowardsin?nite[19].Inelasto-dynamicharmonicconditions,thispurposecanbereachedbythecombinationofthreefunctions:(i)astandardshapefunction,(ii)adecayfunction,and(iii)anoscillatoryfunction.Theissueiscomplexinelasto-dynamicproblemssincethereisnolongerauniquewavespeed,evenforahalf-spaceproblem.Thisproblemcanbeovercomebymeansofspecialin?niteelements,whichrepresentthecharacteristicsofmultiplewavespropagatingintotheunboundouterdomainofthemedia[20];however,thisprocedureincreasesitscomplexity.Alternatively,asdemon-stratedbyYangandHung[13],theuseofconventionalin?niteelementscombinedwithcriteriaforthechoiceofthedecayandoscillatoryfactorscanleadtoaccurateresultsevenformovingloadproblems.So,inthepresentwork,theauthorsdecidedontheuseofthein?niteelementsproposedbytheaforementionedauthors.
Aschematicrepresentationoftheadoptedin?niteelementsispresentedinFig.2.Thedisplacementshapefunctionsoftheelementarede?nedbyN1¼
12
ZðZÀ1ÞeÀaxeik0
xð11Þ
NÞðZþ1ÞeÀaxeik0
2¼ÀðZÀ1x
ð12
内容需要下载文档才能查看Þ
Fig.2.In?niteelements:(a)globalcoordinatesand(b)localcoordinates(after[13]).
2.5D维有限元经典文献,把等效线性化模型应用到其中。
224
P.AlvesCostaetal./SoilDynamicsandEarthquakeEngineering30(2010)221–235
N3¼
1ZðZþ1ÞeÀaxeik0
xð13Þ
whereaandk0arethedecayandoscillatoryfactors,respectively.Fordetailsregardingtheselectionprocedureofvaluesforthesefactors,readersshouldrefertotheworksofYangetal.[13,21].
Havingde?nedtheshapefunctionsofthein?niteelements,theusual?niteelementprocedureisapplied,i.e.,thestiffnessandmassmatricesofeachin?niteelementarecomputedandaddedtotheglobalmatrices,formingtheglobalsystemofequations.2.3.Modellingparticularelements:sleepersandrails
Thesleepersarediscontinuouselementsandtheconsiderationofthisdiscontinuityincreasesthedif?cultyoftheirimplementa-tionona2.5Dmodel.However,someauthorshavemodelledtheinherentinhomogeneityofthesleepers,havingconcludedthatthecomputationaleffortwasdisproportionatewhencomparedwiththeobtainedincreaseofaccuracy[11,22,23].
Inthiswork,thesleepersaremodelledconsideringanequivalentcontinuousformulation,whichrepresentsacompro-misesolutionbetweencomplexity/computationalcostandaccu-racy.Theadoptedformulationisthemostusualforthistypeofproblems;nevertheless,thecomparisonbetweencomputedandexperimentalresultsprovedtobesatisfactory,mainlywhentherelevantfrequencieswerebelow500Hz,asshowedinthereceptancetestsperformedbyKnotheandGrassie[24]andKnotheandWu[25].Sheng[23]alsodedicatedattentiontothisissueand,aftercomparingtheoreticalresultsoftheverticaldynamicresponseinducedonaperiodicmodelandonanequivalentcontinuousmodel,concludedthatforfrequenciesupto250Hztheresultsobtainedbythetwodistinctformulationsareverysimilar.TakemiyaandBian[11]developedaninhomo-geneoustrackmodelwherethesleepersweresimulatedusingadiscreteformulationandalsoconcludedthat,forlow-frequencyanalyses,theuseofadiscretemodelforthesleeperswouldnotbeadvantageous,evenwhenthesoilbeneaththetrackpresentspoormechanicalproperties.Therefore,equivalentcontinuoustrackmodelsprovideareliablepredictionofthetrackreceptance,butdonotaccountforparametricexcitationasthesmallspatialvariationofthesupportstiffnessofthediscretelysupportedtrackisdisregarded[5,26].
Thedevelopedmethodpresentssomeimprovementsinrelationtootherequivalentcontinuousmethodspreviouslyproposedbyotherauthors,sincealmostallotherstudiesconsidertheinertialeffectofthesleepersbutdisregarditsstiffnessinthecrossdirection.Anexceptionmustbementioned,relativelytotheworkdevelopedbyKarlstromandBostrom[10]whereanisotropicKirshoffplateswereusedtosimulatethesleepers.
Inthispaper,themethodproposedbyKarlstromandBostrom[10]isusedasastartingpointforthedevelopmentofthesleepersmodel.InsteadofKirshoffplates,assuggestedbytheabovereferredauthors,theimplementedformulationmakesuseofvolumetricelementsinthe2.5Dsense.Theconstitutivemodelisbasedonananisotropicformulation,wherethephysicalproper-tiesofthesleepersareappliedtode?nethecontinuousequivalentstiffnesspropertiesofthemodelontheplaneperpendiculartothetrackdirection(xdirection).Inturn,regardingthepropertiesonthexdirection,theirstiffnesscanbeassumedeitherclosetozeroorclosetothestiffnessoftheballast,sincethesleepersareusuallyembeddedintheballast.Inwhatconcernstherails,Euler–Bernoullibeamsconnectedtotherestofthe?eldbyrailpadsareused,asillustratedinFig.3.TheselectedoptionofEuler–BernoullibeamsinsteadofTimoshenkobeamsresidesonthefactthat,forfrequenciesupto500Hz,theresultsprovidedbybothformulationsareidentical[27],buttheEuler–
Fig.3.Rail–sleeperconnection.
Bernoullibeammodeliseasiertoimplementinanumericalcode.Somesimpli?cationsareassumed,suchas,forexample,theconnectionbetweentherailandthesleepersisassumedtobecontinuousandonlyonedegreeoffreedomisconsidered,correspondingtotheverticaldisplacement.Thesesimpli?cationsareperfectlyadmissibleforrailwaytrackmodels,asexplainedin[5,24,25].
Themotionoftherailinthetransformeddomainisexpressedbythefollowingsystemofequations:
B"#BEIk4þkÃpÀkÃ
1p??mr??1@20CÀkÃ|???????????????pkÃÀop0CA(?{z????????????????}½K rail
|??????{z??????}0
½M railurail
)
u¼fPgð14Þ
|???????sleeper?{z????????}|{z}fuwhereEIisthebendingstiffnessoftherail;kpisthecomplexstiffnessoftherailpad,mristhemassperunitlengthoftherail;andthevectorsuandfarethevectorsofdisplacementsandloads,respectively.Thesuperscriptsymbolninkprepresentscomplexstiffnessinordertohaverailpad’sdampingintoaccount.Inthiscase,kÃp¼kpþiocp,wherecpistheviscousdampingfactorandkpisthestiffnessoftherailpad.
Thestiffnessandmassmatricesoftherailarethenassembledtotheglobaldynamicsystemofequations.Animprovednumericalperformanceisobtainedbythesubdivisionofmatrix[K]railintosub-matrices,totallyindependentofthewavenumber;thiscanbeachievedbyfollowingtheprocedureexplainedabove.2.4.Equivalentlinearanalysis
Whenlargestrains,i.e.between10À4and10À2,canbeexpected,theuseofanequivalentlinearmodelmaybenecessary.Withtheincreaseofthestrainlevel,thestiffnesstendstodecreaseandthedissipationofenergytendstoincrease,asillustratedinFig.4forasymmetriccyclicloadingcondition[28,29].
ThehystereticloopsrepresentedinFig.4canbedescribedby:(i)thepathofloopitselfand(ii)theparametersdescribingthegeneralshapeoftheloopanditsevolutionwiththestrainlevel.Todescribethepathofloopsanditsevolutionwithstrainlevel,acyclicnon-linearmodelmaybeused[30].However,anaveragebehaviourcanbedescribedbytwoimportantparametersofeachloop:itsinclination(stiffness)anditsbreadth(damping).Thelatterapproachisusedinthispaper.Forthedevelopmentofanequivalentlinearanalysis,twomainparametersareneeded:(i)theelasticpropertiesforverysmallstrains(usuallyobtainedfromthepropagationvelocityofSandPwaves)and(ii)thelawsdescribingstiffnessdegradationanddampingincreasewith
内容需要下载文档才能查看the
2.5D维有限元经典文献,把等效线性化模型应用到其中。
P.AlvesCostaetal./SoilDynamicsandEarthquakeEngineering30(2010)221–235
225
increaseofthestrainlevels.Theselawsshouldbeobtainedfromlaboratorytestsor,initsabsence,fromcorrelationswithsomephysicalparametersofthesoil[31,32].Fig.5showstheglobalaspectofthetypicaldegradationlawsandtheirdependenceontheplasticityindex(PI)andmeancon?ningstress(s0m)[32].
Inordertoaddressthisproblem,anobjectivede?nitionofstrainlevelateach?niteelementisrequired.Inthree-dimen-sionalproblems,thestrainlevelisusuallyde?nedbytheeffectiveoctahedralshearstrainasproposedbyHalabianandNaggar[33]andLysmeretal.[34].Theeffectiveoctahedralshearstrainiscalculatedby
q????????????????????????????????????????????????????????????????????????????????????????????????????122geff¼að15ÞðexÀeyÞ2þðexÀezÞ2þðeyÀezÞ2þ6ðg2xyþgxzþgyzÞ3whereaisaparameterinthe0.5–0.7interval.Inthiswork,ais
assumedequalto0.65asitisusuallyconsideredinseismicanalysis.Thevariableseiandgicorrespondtothestrainsofthestraintensor.
Regardingthenumericalprocedure,itispossible,foradiscretizedmediumthroughanelement-by-elementprocedure,tocomputetheinducedstrainateachelementandtomakecorrectionstothepropertiesuntilanagreementisobtainedwith
theinvolvedstrains.Intheimplementedmodel,itisassumedthatthepropertiesareconstantinsideeach?niteelement,sothestrainsinthecentrepointofeachelementareconsideredrepresentativeofthestrainsinwholeelementdomain.
Fortheupdateofthepropertiesoftheelements,anumberoflinearproblemsaresuccessivelysolveduntilamatchbetweenthestrainlevelandthedynamicpropertiesofthesoilisobtained.Thecomputationalprocedurecanbesummarizedasfollows:1.Assumelow-strainpropertiesforallelements.
http://wendang.chazidian.comingthevalueofgieff,choosenewequivalentlinearvalues,
i+1i+1
Gsecandx,forthenextiteration.
4.Repeatsteps2and3untilthedifferencesbetweencomputedshearmodulusanddampingintwosuccessiveiterationsfallbelowapreviouslyestablishedtoleranceforall?niteelements.Concerningtheconvergencetolerance,avalueof3%is,intheauthors’opinion,consideredacceptable,sincethelinearequiva-lentmodelisanapproximationtotherealproblem.
Itisimportanttobearinmindthateventhoughthelinearequivalentanalysisallowsforanapproximationtothenon-linearsoilbehaviour,theresponseisperformedbyalinearelasticmethod.Thismeansthatthemethodisincapableofrepresentingthechangeofthesoilpropertiesthatactuallyoccurduringthepassageofthetrain[30].Moreover,theapplicationofthismodelinthecontextof2.5D?niteelementsdealswithanapproxima-tioninherenttothemodel:thepropertiesremainconstantinthedirectionalongthetrack,meaningthattheconsidereddegrada-tionprocessisindependentofthetrainposition.
3.Theoreticalvalidation
ThenumericalmodelpresentedintheprevioussectionwasimplementedbytheauthorsinthenumericalplatformMatlab.Sincethemodelisdevelopedinthefrequencydomain,itispossibletotakeadvantageofthenumericalcomputationaltoolsavailableinMatlab2009forparallelprocessing,whichallowforaconsiderablereductionofthecomputationaltime.
Inordertocheckthereliabilityandaccuracyoftheproposedapproachforthedynamicanalysisofthegroundresponseundermovingloadactions,asmallexample,whichwaspreviously
内容需要下载文档才能查看Fig.4.Stress–strainpathduringcyclic
内容需要下载文档才能查看loading.
10.90.80.7Gsec/Gmax0.60.50.40.30.20.1010-6
10-5
10-4
10-3
10-2
10-1
Cyclic shear strain amplitude
内容需要下载文档才能查看1
0.90.80.7Gsec/Gmax0.60.50.40.30.20.1010-6
10-510-410-310-210-1Cyclic shear strain amplitude
Fig.5.Modulusreductioncurvesfor:(a)non-plasticsoilsand(b)plasticsoils(after[32],adapted).
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 《汽车车身修复技术》复习题
- 第五章 人体生物力学与施力特征
- 工程光学第4章
- 生理学 选择题 试题库
- 第三章矩阵的初等变换与线性方程组1 把下列矩阵化为行最简形矩阵
- 第一章 关于力学
- 高等数学下册总复习1 空间解析几何与向量代数
- 对外经贸大学民法总论课堂习题及考试试题集
- 政治经济学试题答案
- 理论力学 ?绪论
- 弹性力学及有限元 第一章 绪论
- 高等数学辅导资料
- 高分子化学教案
- 化工原理(陆美娟高职高专)习题解
- GMT简介及常用敕令[最新]
- 风险与风险管理
- 文秘管理与应用写作形成性考核册
- [指南]广播电视新闻学2011
- 考研院校专业选择申报之农学专业[精彩]
- 量子物理
- 汽车技术测验宝典[整理版]
- 现代生物技术大纲
- 机械结构与创新设计
- 理论力学绪论 第一章 静力学公理和物体的受力分析
- 细胞生物学例题
- 中共新闻事业的发展和全面胜利
- 8第五章圆机成形产品与编织工艺 (-1-2-3-4).ppt
- 统计学课件--CH09_双变量回归与相关_文档
- 环境景观规划课程作业
- 理论力学 第一章 习题解答
网友关注视频
- 七年级下册外研版英语M8U2reading
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
- 外研版英语三起6年级下册(14版)Module3 Unit2
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 冀教版小学数学二年级下册第二单元《余数和除数的关系》
- 冀教版英语五年级下册第二课课程解读
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
- 六年级英语下册上海牛津版教材讲解 U1单词
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 外研版八年级英语下学期 Module3
- 3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
- 冀教版小学数学二年级下册第二单元《租船问题》
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 七年级英语下册 上海牛津版 Unit3
- 冀教版小学英语四年级下册Lesson2授课视频
- 二年级下册数学第二课
- 3月2日小学二年级数学下册(数一数)
- 北师大版数学四年级下册3.4包装
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理