Electrochemical hydrogen peroxide sensors fabricated using cytochrome immobilized on macroelectrodes
上传者:倪旻|上传时间:2015-05-08|密次下载
Electrochemical hydrogen peroxide sensors fabricated using cytochrome immobilized on macroelectrodes
ColloidsandSurfacesB:Biointerfaces123(2014)866–869
ContentslistsavailableatScienceDirect
ColloidsandSurfacesB:Biointerfaces
内容需要下载文档才能查看journalhomepage:http://wendang.chazidian.com/locate/colsurf
内容需要下载文档才能查看b
ShortCommunication
内容需要下载文档才能查看Electrochemicalhydrogenperoxidesensorsfabricatedusingcytochromecimmobilizedonmacroelectrodesandultramicroelectrodes
S.EhsanSalamifar,StephenLee,http://wendang.chazidian.comi?
DepartmentofChemistryUniversityofNebraska-Lincoln,651HamiltonHall,Lincoln,NE68588-0304,USA
article
info
abstract
Articlehistory:
Received2August2014
Receivedinrevisedform4October2014Accepted15October2014
Availableonline28October2014
Keywords:Cytochromec
HydrogenperoxideUltramicroelectrodesRotatingdiskelectrodesMichaelis–MentenkineticsElectrontransferrate
Wereportthedesignandfabricationofhydrogenperoxide(H2O2)sensorsusinghemeproteinsimmo-bilizedonmacroelectrodesandultramicroelectrodes(UMEs).Inthissensordesign,thehemecentersaredirectly“wired”totheelectrodeviatheuseofanimidazole-terminatedself-assembledmonolayer.Wehavesystematicallyevaluatedtheeffectofelectrodetypeandsizeonsensorperformance.ThelimitofdetectionforH2O2determinedusinga10-?mgoldUMEissigni?cantlylowerthanthatobtainedusingastationarymacroelectrode.OurresultsalsohighlighttheadvantagesofusingUMEsforenzymekineticsanalysis;theKmdeterminedusinga10-?mUMEissimilartothatobtainedfromarotatingdiskelectrode.
©2014ElsevierB.V.Allrightsreserved.
Reactiveoxygenspecies(ROS)arecontinuouslyproducedinaer-obiccellsasby-productsofmetabolism.Someofthemarehighlytoxicandthusrapidlyscavengedbybothenzymaticandnonen-zymaticpathways[1,2].Owingtothesedetoxifyingmechanisms,intracellularROSlevelismaintainedataconstantlevel.Faultycon-trolofthesechemicalprocessescouldresultinROSaccumulationinsidecells,creatingaconditioncalled“oxidativestress”,whichhasbeenknowntocausecellgenomeinjury[3].Thecorrelationbetween“oxidativestress”andpathologicalconditionssuchasdif-ferenttypesofcancersiswellestablished[4,5].Thereisaneedfordevelopingrapidandsensitivemethodforinvivomeasure-mentofROSinbiomedicalresearch.Recently,ultramicroelectrodes(UMEs)andnanoelectrodes,duetotheiruniquepropertiessuchashigherratesofmasstransport,reducedcapacitanceandreducedohmicdrop,havefoundwidespreadapplicationsinrealtimeanal-ysisofROSatsinglecelllevel[6–8].WhileROScanbedetecteddirectlyusingPtUMEs,therearemeritsindevelopingbiosensorscapableofmeasuringROS.Hemeproteinssuchashemoglobin,myoglobin(Mb)andcytochromec(Cytc)areknowntobecapa-bleofcatalyzingreductionofROSsuchashydrogenperoxide(H2O2)[9].Biosensorshavesincebeenfabricatedusingthesepro-teins;however,fewhavebeenfabricateddirectlyonanimidazole
?Correspondingauthor.Tel.:+14024725340;fax:+1402472-9402.E-mailaddress:rlai2@unl.edu(http://wendang.chazidian.comi).
(Im)-terminatedself-assembledmonolayer(SAM)[10–12].HerewereportthedesignandfabricationofH2O2sensorsusinghemeproteinsthataredirectly“wired”totheelectrode.Thisstudyalsofocusesonthecomparisonofhemeprotein-basedH2O2sensorsfabricatedonUMEsandmacroelectrodes.
PriortousingagoldUMEasthesensorelectrode,weevalu-atedtheeffectofdifferentproteinimmobilizationproceduresontheelectrochemicalsignalofthesensorongoldmacroelectrodes.We?rstfabricatedsensorsusingtwoconventionalmethods,directadsorptionandcovalentattachmentvian-hydroxysuccinimide/1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide(NHS-EDC)cou-pling[13,14].Forbothsystems,theeffectsofionicstrength,incubationtimeandconcentrationofreagentswerealsoinvesti-gated.Cyclicvoltammograms(CVs)ofthesensorsfabricatedusingtheoptimizedprotocolsareshowninFig.S1.Asetofredoxpeakswithahalf-wavepotential(E1/2)of??0.05Vwasobservedinadegassedphosphatebuffersolution(PBS),indicatingsuccess-fulimmobilizationofCytconthe11-mercaptoundecanoicacid(C11terminatedSAM(Fig.S1A).However,theelectro-chemicalsignalwasunstable,presumablybecauseofthegradualdesorptionofproteinsfromtheelectrodesurface.Incontrast,whiletheuseofNHS-EDCcouplingresultedinasensorwithastableelectrochemicalsignal(Fig.S1B),themulti-stepprocessrendersthisapproachlessattractive.Thisproteinimmobilizationmethodisalsolessreproducible(i.e.,largersensor-to-sensorvariationinprobecoverage),thusitisnotidealforsensorfabrication.Because
http://wendang.chazidian.com/10.1016/j.colsurfb.2014.10.0330927-7765/©2014ElsevierB.V.Allrightsreserved.
S.E.Salamifaretal./ColloidsandSurfacesB:Biointerfaces123(2014)866–869
内容需要下载文档才能查看867
Scheme1.Schematicrepresentationofdirect“wiring”ofhemeproteinsontoagoldelectrodemodi?edwithC11-ImandC8-OH.
ofthesenegativeresults,immobilizationofMbwasnotattemptedusingthesetwoapproaches.
ToeffectivelyanchorCytcandMbforourcurrentapplica-tion,weemployedarecentlydevelopedimmobilizationmethodthatrelieson“direct-wiring”ofthehemecenterstotheelectrode(Scheme1andFig.S2)[10–12].Inbrief,agoldelectrodewas?rstmodi?edwith1-(11-mercaptoundecyl)imidazole(C11-Im)and8-mercapto-1-octanol(C8-OH),theSAM-modi?edelectrodewasthenexposedtoasolutioncontainingeitherCytcorMb.Theelectrochemicalsignaloftheimmobilizedproteinswasrecordedinaprotein-freePBSsolution.Otherpassivatingdiluents,including6-mercapto-1-hexanol(C6-OH)and4-mercapto-1-butanol(C4-OH),werealsoused;C8-OH,however,wasfoundtobebestsuitedforproteinimmobilization.SensorspassivatedwithC6-OHorC4-OHwerenoticeablylessstable,whichisnotunexpectedbasedonourpreviousstudiesonotherSAM-basedbiosensors[15].
Inadditiontothechoiceofpassivatingdiluent,theconcentra-tionratiobetweenthetwoalkanethiolsusedinSAMformationwasfoundtohaveaneffectontheresultantproteincoverage.Highestelectrochemicalsignal(i.e.,highestproteincoverage)wasachievedusingaC11-Im:C8-OHratioof1:1forCytcand7:3forMb(Fig.S3).Threehoursofexposuretimetotheproteinsolution(50?MforCytcand65?MforMb)resultedinthehighestelectrochemicalsignal.Thesensorsfabricatedusingtheoptimalprotocolshowedasetofredoxpeaks,verifyingsuccessfulimmobilizationofpro-teinsontotheC11-Im/C8-OHSAM.TheE1/2wasmorenegativethanthatrecordedfromsensorsfabricatedviadirectadsorptionorNHS-EDCcoupling;thiscouldbeduetothestronginteractionbetweenImandthehemecenter[10,11,16].Thelinearrelation-shipbetweenthepeakcurrent(Ip)andscanrate(??),aswellasthenon-linearcorrelationbetweenIpand??1/2,con?rmsthattheelectrontransferprocessissurface-con?nedinbothcases(Figs.S4andS5).Furthermore,thepeakseparation(??Ep=Epa?Epc)forbothsystemswasproportionaltolog??atscanrateshigherthan2Vs?1(Fig.S6).AccordingtotheLavirontheory[17],theelectrontransferrateconstant(ks)was443±36s?1and2136±353s?1forCytcandMb,respectively[18,19].Despitethelargerks,MbisnotidealforthisapplicationbecauseofitssensitivitytowarddissolvedO2(datanotshown).Eventhoughalltheexperimentswereperformedindegassedsolutions,thereareadvantagesinusingaproteinthatislesspronetointerferencesfromO2.Thus,Cytc,theproteinthatislesssensitivetoO2,wasusedfortherestofthestudy.
TheelectrocatalyticcharacteristicofhemeproteinstowardH2O2reductioniswellestablished[20].ToverifytheactivityoftheimmobilizedCytc,weaddedatotalof800?MH2O2tothecell.Fig.S7showsCVsoftheCytc-modi?edelectrodebeforeandafterseveraladditionsofH2O2.AdditionofH2O2resultedinasimulta-neousincreaseanddecreaseinthecathodicpeakcurrent(Ipc)and
anodicpeakcurrent(Ipa),respectively.Theseresultsverifythatthehemecenteroftheprotein,evenafterbeingboundtoIm,retainsitselectrocatalyticpropertiestowardreductionofH2O2.AdditionofH2O2tosensorswithoutthehemeproteinonlyresultedinaminorchangeinthebackgroundcurrent,provingtheroleofCytcintheelectrocatalyticreductionofH2O2.Thelimitofdetection(LOD)ofthissensorwasfoundtobe200?M.DespitetherelativelyhighLOD,thesesensorsshowedgoodstability;weobserved<10%reductionintheCytcelectrochemicalsignalevenaftertheyhadbeenkeptindegassedPBSat4?Cfor5days.Theprobecoverageofsensorsfabricatedondifferentelectrodesvariedlessthan20%,verifyingreproducibilityandsensor-to-sensorconsistencyinthefabricationprocess.Regardingsensorselectivity,whilewedidnotperformanextensivestudyontheselectivityofthissensor,itisexpectedtobeselectivetowardH2O2reduction.Previousresearchhasdemon-stratedthatthesemediator-freeenzymebiosensors,alsoknownasthird-generationbiosensors,arehighlyselectivetowardtheirtargetsincetheyoperateatapotentialrangeclosetotheredoxpotentialoftheprotein[21].
Toimprovesensorsensitivity,wefabricatedthesamesensoronagoldrotatingdiskelectrode(RDE)andusedhydrodynamicamperometryasthedetectiontechnique.AsshowninFig.1A,successiveadditionsof10?MH2O2resultedinanincreaseintheelectrocatalyticcurrent.TheuseoftheRDEsystemenablesrapidsignalequilibration;steadystatecurrentwasobservedin<10saftertheadditionofH2O2.Thecatalyticcurrentwaspropor-tionaltotheconcentrationofH2O2,exhibitingalineardynamicrangebetween10and250?M(Fig.1B).TheLODwasestimatedtobe3?M(s/n=3),substantiallylowerthantheLOD(200?M)obtainedusingastationarymacroelectrode(Fig.S7).ItisworthnotingthattheresultantcurrentdeviatedfromlinearityatH2O2concentrationsbeyond250?M,suggestingthatthekineticsofthiselectrocatalyticprocessfollowstheMichaelis–Mentenmodel[22].TheapparentMichaelis–Mentenconstant(Km),whichindi-catestheenzyme–substratekinetics,wascalculatedusingtheLineweaver–Burkequation[23]:
11Km1=+·ssmaxmax(1)
where,Issisthesteady-statecurrentaftertheadditionofthesub-strate,CisthebulkconcentrationofsubstrateandImaxisthemaximumcurrentmeasuredundersaturatedsubstratesolution.Kmcanbecalculatedfromtheslopeandinterceptofthedoublereciprocalplot(1/Issvs.1/Cplot)(Fig.S8).AKmof1.38mMwasdeterminedforthissensor,suggestingthattheproteins,asimmo-bilized,haveahighaf?nitytowardthesubstrate,H2O2.ThisvalueiswithintherangeofpreviouslyreportedKmvalues[24–26].ForimmobilizedCytc,thereisagreatvariabilityintheKmvalues
868
S.E.Salamifaretal./ColloidsandSurfacesB:Biointerfaces123(2014)866–869
内容需要下载文档才能查看Fig.1.ChronoamperometricscanofaRDEmodi?edwithC11-Im/C8-OHandCytcbeforeandaftersuccessiveadditionofH2O2indegassedPBS(A).AlsoshownisthecalibrationplotshowingalinearincreaseincurrentwithincreasingH2O2concentrationbetween10and250?M(B).Thesensorelectrodewasbiasedat?0.4V(vs.Ag/AgCl)andtherotationspeedwas1200rpm.
reportedintheliterature,presumablybecauseoftheuseofdiffer-entproteinimmobilizationmethodsandexperimentalconditions[16].AlthoughtheKmisnotextremelylow,thisproteinimmobi-lizationstrategyhasdemonstratedtobeeffective,versatile,andtheresultantsensorisstableenoughtobeusedinthefabricationofanultramicro-biosensor.
Toevaluatetheeffectofelectrodesizeonsensorperformance,wefabricatedthesameCytc-basedsensoronsmallgolddiskelec-trodeswiththreedifferentdiameters,100?m,25?mand10?m.Fig.2Ashowstheeffectofelectrodesizeontheelectrochemi-calsignaloftheimmobilizedCytc.Asexpected,theredoxpeaksdecreasedinsizewithdecreasingelectrodesize,giventhatfewerproteinscanbeimmobilizedonanelectrodewithasmallersur-facearea.However,despitebeingdwarfedbytheCVsobtainedfromthelargerelectrodes,theredoxpeaksintheCVofthe10-?mUMEwerestilldistinguishable.Inadditiontothemainredoxpeaks,weobservedasmallpeakat?0.09V,whichcouldbeattributedtothenonspeci?cally-adsorbedCytconthemonolayer.UMEshaveseveraladvantages,forexample,theratiooffaradaic/non-faradaiccurrentisoftenimprovedbecauseofthesmallIRdrop.Thus,inCVthecurrentreachesasteadystatevalueathighoverpotentials,whichcanbedescribedusingthefollowingequation:
iss=4nFDCa
(2)
whereissisthediffusion-limitedsteady-statecurrent,aistheradiusoftheelectrode,nisthenumberofelectronstransferredpermolecule,FistheFaraday’sconstant,andDandCarethedif-fusioncoef?cientandbulkconcentrationoftheredoxmolecule,respectively[27].Becauseoftheseuniqueproperties,UMEsarewell-suitedforuseassensorelectrodes,inparticular,forimprov-ingsensorsensitivity.AscanbeseeninFig.2B,achangeintheCVcurrentwasevidentaftertheadditionof10?MH2O2forthesen-sorfabricatedona10-?mUME.ThisLODisslightlyhigherthan
thatdeterminedusingtheRDEsystem(3?M).DespitetheslightdifferenceintheLOD,UMEshaveclearlydemonstratedtobeuse-fulinthefabricationofthisclassofSAM-basedbioelectrocatalyticsensors,albeitwithouttheneedofamoresophisticatedapparatus.Intheory,duetotheenhanceddiffusion,anUMEcouldbeusedinplaceofaRDE,whichmainattributeistocircumventmasstrans-ferlimitations.Tosupporttheabovetheory,wedeterminedKmusingissrecordedwiththe10-?mUMEafterseveraladditionsofH2O2(Fig.2B).Thedoublereciprocalplotderivedfromissrecordedat?0.4VwasusedtodetermineKmaccordingtoEq(1)(Fig.S9).ThecalculatedKmwas720?M,muchlowerthanthevalueobtainedusingtheRDE.ThisdifferencecouldbeattributedtotheenhanceddiffusionattheUME,therebyprovidingahigher?uxofH2O2totheelectrodesurface.Whileamorecomprehensivestudy,whichincludestheuseofdifferentrotationspeed,Cytcsurfacecoverage,andionicstrength,isnecessarytoelucidatethereasonsbehindthisobservation,ourresultshighlighttheadvantagesofusingUMEsinbioelectrocatalyticsensingapplications.Furthermore,itisversatileandcanpotentiallybeusedforanalysisofenzymekineticsofawiderangeofhemeproteins.TheanalyticalperformanceofthecurrentH2O2sensorcanbecomparedtopreviouslydevelopedenzymaticandnon-enzymaticH2O2sensors[28,29].Ingeneral,formediator-freeenzymaticbiosensors,inwhichthesignalingmechanismisbasedonthedirectelectrontransfer(DET)betweentheimmobi-lizedredoxproteinsandtheelectrode,theLODcanreachaslowas10?8M.However,formostH2O2sensorsthatarefabricatedusingCytcimmobilizedonSAMs,suchasthatreportedbyJietal.[30]whichutilizesabinarySAMofthiocticacidandthiocticamide,theLODishigher(e.g.,10?M).DespitedifferencesintheSAMusedinsensorfabrication,theperformanceofmanyotherCytc-basedsensorsisquitesimilar.Ofnote,themainchallengeinconstruc-tingthesemediator-freeenzymaticbiosensorsistheoptimizationofDETbetweenthehemeproteinsandtheunderlyingelectrode.
内容需要下载文档才能查看Fig.2.CVsof10-?m(gray),25-?m(dashed)and100-?m(black)goldelectrodesmodi?edwithC11-Im/C8-OHandCytc(A).CVsofa10-?mUMEmodi?edwithC11-Im/C8-OHandCytcbeforeandaftertheadditionof10,20,30,40,50,and60?MH2O2.AllCVswerecollectedatascanrateof4Vs?1inPBS.
S.E.Salamifaretal./ColloidsandSurfacesB:Biointerfaces123(2014)866–869
869
Itisgenerallydif?culttoachieveDETofredoxproteinsowingtothefactthatactivesitesaredeeplyembeddedintheproteinshells.Moreover,adsorptionorentrapmentofenzymesontothedifferentmaterialsorelectrodesurfaceusuallyresultsinthedenaturationandlossofbioactivityoftheimmobilizedenzymes[31].Thus,inthedesignofthisclassofsensors,?ndingasimplemethodtofacili-tateDETinprede?nedpathwaysinterconnectingtheactivecenterandtheelectrodesurfaceisextremelycrucial[32].Inthiscase,theIm-terminatedSAMservesasanidealplatformforimmobilizationofCytc,therebypreventingtheproteinfromdenaturation,aswellasenabling“directwiring”betweentheredoxcenterofthepro-teinandtheunderlyingelectrode.ItisasimpleyeteffectivewaytofacilitateDET,circumventingthemainchallengeinthedesignandfabricationofthisclassofbiosensors.
Inconclusion,wehavesuccessfullydesignedandfabricatedH2O2sensorsthatarebasedondirectimmobilizationofhemeproteinssuchasCytcongoldelectrodesofdifferentsizes.OurresultsshowthatUMEsarecompatiblewiththissensordesignandarecapableofachievingaLODthatisnotpossiblewithsta-tionarymacroelectrodes.Moreimportantly,UMEscanbeusedtocalculateKmforimmobilizedenzymes,animportantparameterinbioelectrocatalysisthatisoftendeterminedusingRDEs.Owingtothesimplicityofthissensordesign,potentialapplicationsarenumerous;itiswellsuitedfordirectdetectionofextracellularandintracellularROSinlivecellsandthesestudiesarecurrentlyunderwayinthelaboratory[8,31,33].
Acknowledgments
ThisresearchwassupportedbyNSF(CHE-0955439andDMR-0851703),NEEPSCoR(EPS-1004094).TheauthorswouldliketothankAnitaJ.Zaitounaforthehelpfuldiscussions.
AppendixA.Supplementarydata
Supplementarymaterialrelatedtothisarticlecanbefound,intheonlineversion,athttp://wendang.chazidian.com/10.1016/j.colsurfb.2014.10.033.
References
[1]J.M.McCord,Am.J.Med.108(2000)652.
[2]G.Diaz,S.Liu,R.Isola,A.Diana,A.Falchi,Histochem.CellBiol.120(2003)
319.
[3]H.J.Forman,M.Maiorino,F.Ursini,Biochemistry29(2010)835.[4]G.Waris,H.Ahsan,J.Carcinog.5(2006)14.
[5]B.Uttara,A.V.Singh,P.Zamboni,R.T.Mahajan,Curr.Neuropharmacol.7(2009)
65.
[6]Y.Wang,J.Noël,J.Velmurugan,W.Nogala,M.V.Mirkin,C.Lu,M.Collignon,F.
Lemaître,C.Amatore,Proc.Natl.Acad.Sci.U.S.A.109(2012)11534.[7]X.Zhao,M.Zhang,Y.Long,Z.Ding,Can.J.Chem.88(2010)569.[8]S.E.Salamifar,http://wendang.chazidian.comi,Anal.Chem.85(2013)9417.
[9]W.Chen,S.Cai,Q.-Q.Ren,W.Wen,Y.-D.Zhao,Analyst137(2012)49.
[10]J.Wei,H.Liu,A.R.Dick,H.Yamamoto,Y.He,D.H.Waldeck,J.Am.Chem.Soc.
124(2002)9591.
[11]D.E.Khoshtariya,J.Wei,H.Liu,H.Yue,D.H.Waldeck,J.Am.Chem.Soc.125
(2003)7704.
[12]A.J.Zaitouna,http://wendang.chazidian.comi,http://wendang.chazidian.commun.47(2011)12391.[13]X.Ji,T.T.Nakamura,Anal.Sci.25(2009)659.[14]B.Ge,F.Lisdat,Anal.Chim.Acta454(2002)53.
[15]J.Y.Gerasimov,http://wendang.chazidian.comi,http://wendang.chazidian.commun.46(2010)395.
[16]H.Yamamoto,H.Liu,D.H.Waldeck,http://wendang.chazidian.commun.(2001)1032.[17]http://wendang.chazidian.comviron,Electroanal.Chem.101(1979)19.
[18]H.Yue,D.Khoshtariya,D.H.Waldeck,J.Grochol,P.Hildebrandt,D.H.Murgida,
J.Phys.Chem.B110(2006)19906.
[19]S.Bernad,N.Leygue,H.Korri-Youssou?,S.Lecomte,Eur.Biophys.J.36(2007)
1039.
[20]S.Casalini,G.Battistuzzi,M.Borsari,C.Bortolotti,G.DiRocco,A.Ranieri,M.Sol,
J.Phys.Chem.B114(2010)1698.
[21]L.Gorton,A.Lindgren,T.Larsson,F.D.Munteanu,T.Ruzgas,I.Gazaryan,Anal.
Chim.Acta400(1999)91.
[22]K.A.Johnson,R.S.Goody,Biochemistry50(2011)8264.[23]J.Li,S.N.Tan,H.Ge,Anal.Chim.Acta335(1996)137.[24]C.Xiang,Y.Zou,L.X.Sun,F.Xu,Talanta30(2007)206.
[25]H.Ju,S.Liu,B.Ge,F.Lisdat,F.W.Scheller,Electroanalysis14(2002)141.[26]L.Wang,D.H.Waldeck,J.Phys.Chem.C112(2008)1351.[27]A.M.Bond,Analyst119(1994)1R–21R.
[28]S.Chen,R.Yuan,Y.Chai,F.Hu,Microchim.Acta180(2013)15.[29]W.Chen,S.Cai,Q.Ren,W.Wen,Y.Zhao,Analyst137(2012)49.[30]X.Ji,T.Nakamura,Anal.Sci.25(2009)659.
[31]X.Zeng,X.Li,X.Liu,Y.Liu,S.Luo,B.Kong,S.Yang,W.Wei,Biosens.Bioelectron.
25(2009)896.
[32]R.S.Freire,C.A.Pessoa,L.D.Mello,L.T.Kubota,J.Braz.Chem.Soc.14(2003)
230.
[33]S.E.Salamifar,http://wendang.chazidian.comi,Anal.Chem.86(2014)2849.
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 全国统考教师资格《保教知识与能力(幼儿)》考情分析
- 7.2.2用坐标表示平移(两课时)(2013新版人教版)课件(七年级下) 2Word
- 第6课 《对外友好往来》Word
- 幼儿常见传染病及预防
- 关于春天的诗词100首(排版漂亮打印版)
- 党员干部红色教育专题培训班-浙大培训基地
- 幼儿教师资格证知识点讲解——班杜拉
- 复地御香山产品定位及物业发展建议Word
- 教资知识点详解—幼儿园环境创设的原则
- Overhead variances 2014Word
- 教资笔试——揭开“个性”的奥秘
- 学前儿童思维发展的阶段
- 广州市老人院扩建一期工程可行性研究报告-广州中撰咨询
- 学前儿童情绪情感发展
- 解析:学前儿童理解发展的趋势
- 教资笔试知识点—想象的发展
- 从试题出发备考保教科目二——游戏篇
- 根据游戏的教育作用分类
- 幼儿《指南》中的常考点
- 剖析:最容易出现问题的三大类装饰材料!Word
- 2017年11月4日下半年全国统考教师资格 《保教知识与能力》考情分析
- “幼儿想象的夸张性”知识点讲解
- 美元汇率与美国国际收支平衡_变动的关系及初步解释_贺力平
- 现在完成时的讲解和练习题 李兰答案
- 生态园建设项目可行性研究报告
- 学前晚期幼儿年龄特点
- 新八德班会教案
- 《计算机网络技术》第4章复习考试题(二)答案
- 2丝绸之路Word
- 韩国时尚文化与女性主体地位Word
网友关注视频
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
- 冀教版小学数学二年级下册第二单元《余数和除数的关系》
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 小学英语单词
- 冀教版小学数学二年级下册第二单元《租船问题》
- 六年级英语下册上海牛津版教材讲解 U1单词
- 30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
- 北师大版小学数学四年级下册第15课小数乘小数一
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 冀教版小学数学二年级下册1
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 沪教版八年级下册数学练习册21.3(2)分式方程P15
- 苏科版数学七年级下册7.2《探索平行线的性质》
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 外研版八年级英语下学期 Module3
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 冀教版英语四年级下册第二课
- 冀教版小学英语四年级下册Lesson2授课视频
- 3月2日小学二年级数学下册(数一数)
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理

