教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> > 物理> Electrochemical hydrogen peroxide sensors fabricated using cytochrome immobilized on macroelectrodes

Electrochemical hydrogen peroxide sensors fabricated using cytochrome immobilized on macroelectrodes

ColloidsandSurfacesB:Biointerfaces123(2014)866–869

ContentslistsavailableatScienceDirect

ColloidsandSurfacesB:Biointerfaces

内容需要下载文档才能查看

journalhomepage:http://wendang.chazidian.com/locate/colsurf

内容需要下载文档才能查看

b

ShortCommunication

内容需要下载文档才能查看

Electrochemicalhydrogenperoxidesensorsfabricatedusingcytochromecimmobilizedonmacroelectrodesandultramicroelectrodes

S.EhsanSalamifar,StephenLee,http://wendang.chazidian.comi?

DepartmentofChemistryUniversityofNebraska-Lincoln,651HamiltonHall,Lincoln,NE68588-0304,USA

article

info

abstract

Articlehistory:

Received2August2014

Receivedinrevisedform4October2014Accepted15October2014

Availableonline28October2014

Keywords:Cytochromec

HydrogenperoxideUltramicroelectrodesRotatingdiskelectrodesMichaelis–MentenkineticsElectrontransferrate

Wereportthedesignandfabricationofhydrogenperoxide(H2O2)sensorsusinghemeproteinsimmo-bilizedonmacroelectrodesandultramicroelectrodes(UMEs).Inthissensordesign,thehemecentersaredirectly“wired”totheelectrodeviatheuseofanimidazole-terminatedself-assembledmonolayer.Wehavesystematicallyevaluatedtheeffectofelectrodetypeandsizeonsensorperformance.ThelimitofdetectionforH2O2determinedusinga10-?mgoldUMEissigni?cantlylowerthanthatobtainedusingastationarymacroelectrode.OurresultsalsohighlighttheadvantagesofusingUMEsforenzymekineticsanalysis;theKmdeterminedusinga10-?mUMEissimilartothatobtainedfromarotatingdiskelectrode.

©2014ElsevierB.V.Allrightsreserved.

Reactiveoxygenspecies(ROS)arecontinuouslyproducedinaer-obiccellsasby-productsofmetabolism.Someofthemarehighlytoxicandthusrapidlyscavengedbybothenzymaticandnonen-zymaticpathways[1,2].Owingtothesedetoxifyingmechanisms,intracellularROSlevelismaintainedataconstantlevel.Faultycon-trolofthesechemicalprocessescouldresultinROSaccumulationinsidecells,creatingaconditioncalled“oxidativestress”,whichhasbeenknowntocausecellgenomeinjury[3].Thecorrelationbetween“oxidativestress”andpathologicalconditionssuchasdif-ferenttypesofcancersiswellestablished[4,5].Thereisaneedfordevelopingrapidandsensitivemethodforinvivomeasure-mentofROSinbiomedicalresearch.Recently,ultramicroelectrodes(UMEs)andnanoelectrodes,duetotheiruniquepropertiessuchashigherratesofmasstransport,reducedcapacitanceandreducedohmicdrop,havefoundwidespreadapplicationsinrealtimeanal-ysisofROSatsinglecelllevel[6–8].WhileROScanbedetecteddirectlyusingPtUMEs,therearemeritsindevelopingbiosensorscapableofmeasuringROS.Hemeproteinssuchashemoglobin,myoglobin(Mb)andcytochromec(Cytc)areknowntobecapa-bleofcatalyzingreductionofROSsuchashydrogenperoxide(H2O2)[9].Biosensorshavesincebeenfabricatedusingthesepro-teins;however,fewhavebeenfabricateddirectlyonanimidazole

?Correspondingauthor.Tel.:+14024725340;fax:+1402472-9402.E-mailaddress:rlai2@unl.edu(http://wendang.chazidian.comi).

(Im)-terminatedself-assembledmonolayer(SAM)[10–12].HerewereportthedesignandfabricationofH2O2sensorsusinghemeproteinsthataredirectly“wired”totheelectrode.Thisstudyalsofocusesonthecomparisonofhemeprotein-basedH2O2sensorsfabricatedonUMEsandmacroelectrodes.

PriortousingagoldUMEasthesensorelectrode,weevalu-atedtheeffectofdifferentproteinimmobilizationproceduresontheelectrochemicalsignalofthesensorongoldmacroelectrodes.We?rstfabricatedsensorsusingtwoconventionalmethods,directadsorptionandcovalentattachmentvian-hydroxysuccinimide/1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide(NHS-EDC)cou-pling[13,14].Forbothsystems,theeffectsofionicstrength,incubationtimeandconcentrationofreagentswerealsoinvesti-gated.Cyclicvoltammograms(CVs)ofthesensorsfabricatedusingtheoptimizedprotocolsareshowninFig.S1.Asetofredoxpeakswithahalf-wavepotential(E1/2)of??0.05Vwasobservedinadegassedphosphatebuffersolution(PBS),indicatingsuccess-fulimmobilizationofCytconthe11-mercaptoundecanoicacid(C11terminatedSAM(Fig.S1A).However,theelectro-chemicalsignalwasunstable,presumablybecauseofthegradualdesorptionofproteinsfromtheelectrodesurface.Incontrast,whiletheuseofNHS-EDCcouplingresultedinasensorwithastableelectrochemicalsignal(Fig.S1B),themulti-stepprocessrendersthisapproachlessattractive.Thisproteinimmobilizationmethodisalsolessreproducible(i.e.,largersensor-to-sensorvariationinprobecoverage),thusitisnotidealforsensorfabrication.Because

http://wendang.chazidian.com/10.1016/j.colsurfb.2014.10.0330927-7765/©2014ElsevierB.V.Allrightsreserved.

S.E.Salamifaretal./ColloidsandSurfacesB:Biointerfaces123(2014)866–869

内容需要下载文档才能查看

867

Scheme1.Schematicrepresentationofdirect“wiring”ofhemeproteinsontoagoldelectrodemodi?edwithC11-ImandC8-OH.

ofthesenegativeresults,immobilizationofMbwasnotattemptedusingthesetwoapproaches.

ToeffectivelyanchorCytcandMbforourcurrentapplica-tion,weemployedarecentlydevelopedimmobilizationmethodthatrelieson“direct-wiring”ofthehemecenterstotheelectrode(Scheme1andFig.S2)[10–12].Inbrief,agoldelectrodewas?rstmodi?edwith1-(11-mercaptoundecyl)imidazole(C11-Im)and8-mercapto-1-octanol(C8-OH),theSAM-modi?edelectrodewasthenexposedtoasolutioncontainingeitherCytcorMb.Theelectrochemicalsignaloftheimmobilizedproteinswasrecordedinaprotein-freePBSsolution.Otherpassivatingdiluents,including6-mercapto-1-hexanol(C6-OH)and4-mercapto-1-butanol(C4-OH),werealsoused;C8-OH,however,wasfoundtobebestsuitedforproteinimmobilization.SensorspassivatedwithC6-OHorC4-OHwerenoticeablylessstable,whichisnotunexpectedbasedonourpreviousstudiesonotherSAM-basedbiosensors[15].

Inadditiontothechoiceofpassivatingdiluent,theconcentra-tionratiobetweenthetwoalkanethiolsusedinSAMformationwasfoundtohaveaneffectontheresultantproteincoverage.Highestelectrochemicalsignal(i.e.,highestproteincoverage)wasachievedusingaC11-Im:C8-OHratioof1:1forCytcand7:3forMb(Fig.S3).Threehoursofexposuretimetotheproteinsolution(50?MforCytcand65?MforMb)resultedinthehighestelectrochemicalsignal.Thesensorsfabricatedusingtheoptimalprotocolshowedasetofredoxpeaks,verifyingsuccessfulimmobilizationofpro-teinsontotheC11-Im/C8-OHSAM.TheE1/2wasmorenegativethanthatrecordedfromsensorsfabricatedviadirectadsorptionorNHS-EDCcoupling;thiscouldbeduetothestronginteractionbetweenImandthehemecenter[10,11,16].Thelinearrelation-shipbetweenthepeakcurrent(Ip)andscanrate(??),aswellasthenon-linearcorrelationbetweenIpand??1/2,con?rmsthattheelectrontransferprocessissurface-con?nedinbothcases(Figs.S4andS5).Furthermore,thepeakseparation(??Ep=Epa?Epc)forbothsystemswasproportionaltolog??atscanrateshigherthan2Vs?1(Fig.S6).AccordingtotheLavirontheory[17],theelectrontransferrateconstant(ks)was443±36s?1and2136±353s?1forCytcandMb,respectively[18,19].Despitethelargerks,MbisnotidealforthisapplicationbecauseofitssensitivitytowarddissolvedO2(datanotshown).Eventhoughalltheexperimentswereperformedindegassedsolutions,thereareadvantagesinusingaproteinthatislesspronetointerferencesfromO2.Thus,Cytc,theproteinthatislesssensitivetoO2,wasusedfortherestofthestudy.

TheelectrocatalyticcharacteristicofhemeproteinstowardH2O2reductioniswellestablished[20].ToverifytheactivityoftheimmobilizedCytc,weaddedatotalof800?MH2O2tothecell.Fig.S7showsCVsoftheCytc-modi?edelectrodebeforeandafterseveraladditionsofH2O2.AdditionofH2O2resultedinasimulta-neousincreaseanddecreaseinthecathodicpeakcurrent(Ipc)and

anodicpeakcurrent(Ipa),respectively.Theseresultsverifythatthehemecenteroftheprotein,evenafterbeingboundtoIm,retainsitselectrocatalyticpropertiestowardreductionofH2O2.AdditionofH2O2tosensorswithoutthehemeproteinonlyresultedinaminorchangeinthebackgroundcurrent,provingtheroleofCytcintheelectrocatalyticreductionofH2O2.Thelimitofdetection(LOD)ofthissensorwasfoundtobe200?M.DespitetherelativelyhighLOD,thesesensorsshowedgoodstability;weobserved<10%reductionintheCytcelectrochemicalsignalevenaftertheyhadbeenkeptindegassedPBSat4?Cfor5days.Theprobecoverageofsensorsfabricatedondifferentelectrodesvariedlessthan20%,verifyingreproducibilityandsensor-to-sensorconsistencyinthefabricationprocess.Regardingsensorselectivity,whilewedidnotperformanextensivestudyontheselectivityofthissensor,itisexpectedtobeselectivetowardH2O2reduction.Previousresearchhasdemon-stratedthatthesemediator-freeenzymebiosensors,alsoknownasthird-generationbiosensors,arehighlyselectivetowardtheirtargetsincetheyoperateatapotentialrangeclosetotheredoxpotentialoftheprotein[21].

Toimprovesensorsensitivity,wefabricatedthesamesensoronagoldrotatingdiskelectrode(RDE)andusedhydrodynamicamperometryasthedetectiontechnique.AsshowninFig.1A,successiveadditionsof10?MH2O2resultedinanincreaseintheelectrocatalyticcurrent.TheuseoftheRDEsystemenablesrapidsignalequilibration;steadystatecurrentwasobservedin<10saftertheadditionofH2O2.Thecatalyticcurrentwaspropor-tionaltotheconcentrationofH2O2,exhibitingalineardynamicrangebetween10and250?M(Fig.1B).TheLODwasestimatedtobe3?M(s/n=3),substantiallylowerthantheLOD(200?M)obtainedusingastationarymacroelectrode(Fig.S7).ItisworthnotingthattheresultantcurrentdeviatedfromlinearityatH2O2concentrationsbeyond250?M,suggestingthatthekineticsofthiselectrocatalyticprocessfollowstheMichaelis–Mentenmodel[22].TheapparentMichaelis–Mentenconstant(Km),whichindi-catestheenzyme–substratekinetics,wascalculatedusingtheLineweaver–Burkequation[23]:

11Km1=+·ssmaxmax(1)

where,Issisthesteady-statecurrentaftertheadditionofthesub-strate,CisthebulkconcentrationofsubstrateandImaxisthemaximumcurrentmeasuredundersaturatedsubstratesolution.Kmcanbecalculatedfromtheslopeandinterceptofthedoublereciprocalplot(1/Issvs.1/Cplot)(Fig.S8).AKmof1.38mMwasdeterminedforthissensor,suggestingthattheproteins,asimmo-bilized,haveahighaf?nitytowardthesubstrate,H2O2.ThisvalueiswithintherangeofpreviouslyreportedKmvalues[24–26].ForimmobilizedCytc,thereisagreatvariabilityintheKmvalues

868

S.E.Salamifaretal./ColloidsandSurfacesB:Biointerfaces123(2014)866–869

内容需要下载文档才能查看

Fig.1.ChronoamperometricscanofaRDEmodi?edwithC11-Im/C8-OHandCytcbeforeandaftersuccessiveadditionofH2O2indegassedPBS(A).AlsoshownisthecalibrationplotshowingalinearincreaseincurrentwithincreasingH2O2concentrationbetween10and250?M(B).Thesensorelectrodewasbiasedat?0.4V(vs.Ag/AgCl)andtherotationspeedwas1200rpm.

reportedintheliterature,presumablybecauseoftheuseofdiffer-entproteinimmobilizationmethodsandexperimentalconditions[16].AlthoughtheKmisnotextremelylow,thisproteinimmobi-lizationstrategyhasdemonstratedtobeeffective,versatile,andtheresultantsensorisstableenoughtobeusedinthefabricationofanultramicro-biosensor.

Toevaluatetheeffectofelectrodesizeonsensorperformance,wefabricatedthesameCytc-basedsensoronsmallgolddiskelec-trodeswiththreedifferentdiameters,100?m,25?mand10?m.Fig.2Ashowstheeffectofelectrodesizeontheelectrochemi-calsignaloftheimmobilizedCytc.Asexpected,theredoxpeaksdecreasedinsizewithdecreasingelectrodesize,giventhatfewerproteinscanbeimmobilizedonanelectrodewithasmallersur-facearea.However,despitebeingdwarfedbytheCVsobtainedfromthelargerelectrodes,theredoxpeaksintheCVofthe10-?mUMEwerestilldistinguishable.Inadditiontothemainredoxpeaks,weobservedasmallpeakat?0.09V,whichcouldbeattributedtothenonspeci?cally-adsorbedCytconthemonolayer.UMEshaveseveraladvantages,forexample,theratiooffaradaic/non-faradaiccurrentisoftenimprovedbecauseofthesmallIRdrop.Thus,inCVthecurrentreachesasteadystatevalueathighoverpotentials,whichcanbedescribedusingthefollowingequation:

iss=4nFDCa

(2)

whereissisthediffusion-limitedsteady-statecurrent,aistheradiusoftheelectrode,nisthenumberofelectronstransferredpermolecule,FistheFaraday’sconstant,andDandCarethedif-fusioncoef?cientandbulkconcentrationoftheredoxmolecule,respectively[27].Becauseoftheseuniqueproperties,UMEsarewell-suitedforuseassensorelectrodes,inparticular,forimprov-ingsensorsensitivity.AscanbeseeninFig.2B,achangeintheCVcurrentwasevidentaftertheadditionof10?MH2O2forthesen-sorfabricatedona10-?mUME.ThisLODisslightlyhigherthan

thatdeterminedusingtheRDEsystem(3?M).DespitetheslightdifferenceintheLOD,UMEshaveclearlydemonstratedtobeuse-fulinthefabricationofthisclassofSAM-basedbioelectrocatalyticsensors,albeitwithouttheneedofamoresophisticatedapparatus.Intheory,duetotheenhanceddiffusion,anUMEcouldbeusedinplaceofaRDE,whichmainattributeistocircumventmasstrans-ferlimitations.Tosupporttheabovetheory,wedeterminedKmusingissrecordedwiththe10-?mUMEafterseveraladditionsofH2O2(Fig.2B).Thedoublereciprocalplotderivedfromissrecordedat?0.4VwasusedtodetermineKmaccordingtoEq(1)(Fig.S9).ThecalculatedKmwas720?M,muchlowerthanthevalueobtainedusingtheRDE.ThisdifferencecouldbeattributedtotheenhanceddiffusionattheUME,therebyprovidingahigher?uxofH2O2totheelectrodesurface.Whileamorecomprehensivestudy,whichincludestheuseofdifferentrotationspeed,Cytcsurfacecoverage,andionicstrength,isnecessarytoelucidatethereasonsbehindthisobservation,ourresultshighlighttheadvantagesofusingUMEsinbioelectrocatalyticsensingapplications.Furthermore,itisversatileandcanpotentiallybeusedforanalysisofenzymekineticsofawiderangeofhemeproteins.TheanalyticalperformanceofthecurrentH2O2sensorcanbecomparedtopreviouslydevelopedenzymaticandnon-enzymaticH2O2sensors[28,29].Ingeneral,formediator-freeenzymaticbiosensors,inwhichthesignalingmechanismisbasedonthedirectelectrontransfer(DET)betweentheimmobi-lizedredoxproteinsandtheelectrode,theLODcanreachaslowas10?8M.However,formostH2O2sensorsthatarefabricatedusingCytcimmobilizedonSAMs,suchasthatreportedbyJietal.[30]whichutilizesabinarySAMofthiocticacidandthiocticamide,theLODishigher(e.g.,10?M).DespitedifferencesintheSAMusedinsensorfabrication,theperformanceofmanyotherCytc-basedsensorsisquitesimilar.Ofnote,themainchallengeinconstruc-tingthesemediator-freeenzymaticbiosensorsistheoptimizationofDETbetweenthehemeproteinsandtheunderlyingelectrode.

内容需要下载文档才能查看

Fig.2.CVsof10-?m(gray),25-?m(dashed)and100-?m(black)goldelectrodesmodi?edwithC11-Im/C8-OHandCytc(A).CVsofa10-?mUMEmodi?edwithC11-Im/C8-OHandCytcbeforeandaftertheadditionof10,20,30,40,50,and60?MH2O2.AllCVswerecollectedatascanrateof4Vs?1inPBS.

S.E.Salamifaretal./ColloidsandSurfacesB:Biointerfaces123(2014)866–869

869

Itisgenerallydif?culttoachieveDETofredoxproteinsowingtothefactthatactivesitesaredeeplyembeddedintheproteinshells.Moreover,adsorptionorentrapmentofenzymesontothedifferentmaterialsorelectrodesurfaceusuallyresultsinthedenaturationandlossofbioactivityoftheimmobilizedenzymes[31].Thus,inthedesignofthisclassofsensors,?ndingasimplemethodtofacili-tateDETinprede?nedpathwaysinterconnectingtheactivecenterandtheelectrodesurfaceisextremelycrucial[32].Inthiscase,theIm-terminatedSAMservesasanidealplatformforimmobilizationofCytc,therebypreventingtheproteinfromdenaturation,aswellasenabling“directwiring”betweentheredoxcenterofthepro-teinandtheunderlyingelectrode.ItisasimpleyeteffectivewaytofacilitateDET,circumventingthemainchallengeinthedesignandfabricationofthisclassofbiosensors.

Inconclusion,wehavesuccessfullydesignedandfabricatedH2O2sensorsthatarebasedondirectimmobilizationofhemeproteinssuchasCytcongoldelectrodesofdifferentsizes.OurresultsshowthatUMEsarecompatiblewiththissensordesignandarecapableofachievingaLODthatisnotpossiblewithsta-tionarymacroelectrodes.Moreimportantly,UMEscanbeusedtocalculateKmforimmobilizedenzymes,animportantparameterinbioelectrocatalysisthatisoftendeterminedusingRDEs.Owingtothesimplicityofthissensordesign,potentialapplicationsarenumerous;itiswellsuitedfordirectdetectionofextracellularandintracellularROSinlivecellsandthesestudiesarecurrentlyunderwayinthelaboratory[8,31,33].

Acknowledgments

ThisresearchwassupportedbyNSF(CHE-0955439andDMR-0851703),NEEPSCoR(EPS-1004094).TheauthorswouldliketothankAnitaJ.Zaitounaforthehelpfuldiscussions.

AppendixA.Supplementarydata

Supplementarymaterialrelatedtothisarticlecanbefound,intheonlineversion,athttp://wendang.chazidian.com/10.1016/j.colsurfb.2014.10.033.

References

[1]J.M.McCord,Am.J.Med.108(2000)652.

[2]G.Diaz,S.Liu,R.Isola,A.Diana,A.Falchi,Histochem.CellBiol.120(2003)

319.

[3]H.J.Forman,M.Maiorino,F.Ursini,Biochemistry29(2010)835.[4]G.Waris,H.Ahsan,J.Carcinog.5(2006)14.

[5]B.Uttara,A.V.Singh,P.Zamboni,R.T.Mahajan,Curr.Neuropharmacol.7(2009)

65.

[6]Y.Wang,J.Noël,J.Velmurugan,W.Nogala,M.V.Mirkin,C.Lu,M.Collignon,F.

Lemaître,C.Amatore,Proc.Natl.Acad.Sci.U.S.A.109(2012)11534.[7]X.Zhao,M.Zhang,Y.Long,Z.Ding,Can.J.Chem.88(2010)569.[8]S.E.Salamifar,http://wendang.chazidian.comi,Anal.Chem.85(2013)9417.

[9]W.Chen,S.Cai,Q.-Q.Ren,W.Wen,Y.-D.Zhao,Analyst137(2012)49.

[10]J.Wei,H.Liu,A.R.Dick,H.Yamamoto,Y.He,D.H.Waldeck,J.Am.Chem.Soc.

124(2002)9591.

[11]D.E.Khoshtariya,J.Wei,H.Liu,H.Yue,D.H.Waldeck,J.Am.Chem.Soc.125

(2003)7704.

[12]A.J.Zaitouna,http://wendang.chazidian.comi,http://wendang.chazidian.commun.47(2011)12391.[13]X.Ji,T.T.Nakamura,Anal.Sci.25(2009)659.[14]B.Ge,F.Lisdat,Anal.Chim.Acta454(2002)53.

[15]J.Y.Gerasimov,http://wendang.chazidian.comi,http://wendang.chazidian.commun.46(2010)395.

[16]H.Yamamoto,H.Liu,D.H.Waldeck,http://wendang.chazidian.commun.(2001)1032.[17]http://wendang.chazidian.comviron,Electroanal.Chem.101(1979)19.

[18]H.Yue,D.Khoshtariya,D.H.Waldeck,J.Grochol,P.Hildebrandt,D.H.Murgida,

J.Phys.Chem.B110(2006)19906.

[19]S.Bernad,N.Leygue,H.Korri-Youssou?,S.Lecomte,Eur.Biophys.J.36(2007)

1039.

[20]S.Casalini,G.Battistuzzi,M.Borsari,C.Bortolotti,G.DiRocco,A.Ranieri,M.Sol,

J.Phys.Chem.B114(2010)1698.

[21]L.Gorton,A.Lindgren,T.Larsson,F.D.Munteanu,T.Ruzgas,I.Gazaryan,Anal.

Chim.Acta400(1999)91.

[22]K.A.Johnson,R.S.Goody,Biochemistry50(2011)8264.[23]J.Li,S.N.Tan,H.Ge,Anal.Chim.Acta335(1996)137.[24]C.Xiang,Y.Zou,L.X.Sun,F.Xu,Talanta30(2007)206.

[25]H.Ju,S.Liu,B.Ge,F.Lisdat,F.W.Scheller,Electroanalysis14(2002)141.[26]L.Wang,D.H.Waldeck,J.Phys.Chem.C112(2008)1351.[27]A.M.Bond,Analyst119(1994)1R–21R.

[28]S.Chen,R.Yuan,Y.Chai,F.Hu,Microchim.Acta180(2013)15.[29]W.Chen,S.Cai,Q.Ren,W.Wen,Y.Zhao,Analyst137(2012)49.[30]X.Ji,T.Nakamura,Anal.Sci.25(2009)659.

[31]X.Zeng,X.Li,X.Liu,Y.Liu,S.Luo,B.Kong,S.Yang,W.Wei,Biosens.Bioelectron.

25(2009)896.

[32]R.S.Freire,C.A.Pessoa,L.D.Mello,L.T.Kubota,J.Braz.Chem.Soc.14(2003)

230.

[33]S.E.Salamifar,http://wendang.chazidian.comi,Anal.Chem.86(2014)2849.

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
六年级英语下册上海牛津版教材讲解 U1单词
北师大版数学 四年级下册 第三单元 第二节 小数点搬家
三年级英语单词记忆下册(沪教版)第一二单元复习
河南省名校课堂七年级下册英语第一课(2020年2月10日)
冀教版英语四年级下册第二课
七年级英语下册 上海牛津版 Unit3
七年级下册外研版英语M8U2reading
七年级英语下册 上海牛津版 Unit9
30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
外研版八年级英语下学期 Module3
外研版英语七年级下册module3 unit1第二课时
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
北师大版小学数学四年级下册第15课小数乘小数一
《空中课堂》二年级下册 数学第一单元第1课时
外研版英语七年级下册module3 unit2第二课时
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
苏教版二年级下册数学《认识东、南、西、北》
第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
《小学数学二年级下册》第二单元测试题讲解
沪教版八年级下册数学练习册一次函数复习题B组(P11)
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
沪教版八年级下册数学练习册21.3(2)分式方程P15