教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> > 英语考试> On semi-convergence of Hermitian and skew-Hermitian

On semi-convergence of Hermitian and skew-Hermitian

上传者:李挥
|
上传时间:2015-05-09
|
次下载

On semi-convergence of Hermitian and skew-Hermitian

Computing(2010)89:171–197

DOI10.1007/s00607-010-0101-4

Onsemi-convergenceofHermitianandskew-Hermitiansplittingmethodsforsingularlinearsystems

Zhong-ZhiBai

Received:10August2009/Accepted:7June2010/Publishedonline:6July2010

©Springer-Verlag2010

AbstractForthesingular,non-Hermitian,andpositivesemidefinitesystemsoflinearequations,wederivenecessaryandsuf?cientconditionsforguaranteeingthesemi-convergenceoftheHermitianandskew-Hermitiansplitting(HSS)iterationmethods.Wetheninvestigatethesemi-convergencefactorandestimateitsupperboundfortheHSSiterationmethod.Ifthesemi-convergenceconditionissatis?ed,itisshownthatthesemi-convergencerateisthesameasthatoftheHSSiterationmethodappliedtoalinearsystemwiththecoef?cientmatrixequaltothecompressionoftheoriginalmatrixontherangespaceofitsHermitianpart,thatis,thematrixobtainedfromtheoriginalmatrixbyrestrictingthedomainandprojectingtherangespacetotherangespaceoftheHermitianpart.Inparticular,anupperboundisobtainedintermsofthelargestandthesmallestnonzeroeigenvaluesoftheHermitianpartofthecoef?-cientmatrix.Inaddition,applicationsoftheHSSiterationmethodasapreconditionerforKrylovsubspacemethodssuchasGMRESareinvestigatedindetail,andsev-eralexamplesareusedtoillustratethetheoreticalresultsandexaminethenumericalCommunicatedbyC.C.Douglas.

SupportedbyTheNationalBasicResearchProgram(No.2005CB321702),TheChinaOutstandingYoungScientistFoundation(No.10525102)andTheNationalNaturalScienceFoundation(No.10471146),People’sRepublicofChina.

Z.-Z.Bai

SchoolofMathematicsandComputerScience,GuizhouNormalUniversity,

550001Guiyang,People’sRepublicofChina

Z.-Z.Bai(B)

StateKeyLaboratoryofScienti?c/EngineeringComputing,InstituteofComputational

MathematicsandScienti?c/EngineeringComputing,AcademyofMathematics

andSystemsScience,ChineseAcademyofSciences,P.O.Box2719,

100190Beijing,People’sRepublicofChina

e-mail:bzz@http://wendang.chazidian.com

123

172Z.-Z.BaieffectivenessoftheHSSiterationmethodservedeitherasapreconditionerforGMRESorasasolver.

KeywordsSingularlinearsystem·Non-Hermitianmatrix·Positivesemidefinitematrix·Hermitianandskew-Hermitiansplitting·Splittingiterationmethod·Semi-convergence·Preconditioningmatrix·Krylovsubspacemethod

MathematicsSubjectClassi?cation(2000)

1Introduction

Weconsideraniterativesolutionofthelarge,sparse,non-Hermitianand,possibly,singularsystemoflinearequations

Ax=b,A∈Cn×n,A=A?,andx,b∈Cn,(1.1)65F10·65F50·CR:G1.3

whereA?denotestheconjugatetransposeofthecomplexmatrixA;see[17–19,25].BasedontheHermitianandskew-Hermitian(HS)splitting

A=H(A)+S(A),withH(A)=11(A+A?)andS(A)=(A?A?),22

Baietal.[7]establishedthefollowingHermitianandskew-Hermitiansplitting(HSS)iterationmethodforsolvingthenon-Hermitiansystemoflinearequations(1.1).

TheHSSIterationMethod.Givenaninitialguessx(0)∈Cn,com-putex(k)fork=0,1,2,http://wendang.chazidian.comingthefollowingiterationsch-emeuntil{x(k)}satisfiesthestoppingcriterion:

??(αI+H(A))x(k+)=(αI?S(A))x(k)+b,

(αI+S(A))x(k+1)=(αI?H(A))x(k+)+b,

whereαisagivenpositiveconstantandI∈Cn×ntheiden-titymatrix.

Whenthecoef?cientmatrixA∈Cn×nispositivedefinite,i.e.,itsHermitianpartH(A)∈Cn×nisHermitianpositivedefinite,Baietal.provedin[7]thattheHSSiterationconvergesunconditionallytotheexactsolutionofthesystemoflinearequa-tions(1.1),withtheboundontherateofconvergenceaboutthesameasthatoftheconjugategradientmethodwhenappliedtotheHermitianmatrixH(A):indeedbythemixing-upeffectdescribedin[14,Sect.2.1.3]thegivenboundsofconvergenceratescouldbeverypessimistic,asalreadyobservedin[7].Moreover,anupperboundofthecontractionfactorisobtainedintermsofthelargestandthesmallestnonzeroeigen-valuesofH(A).NumericalexperimentshaveshownthattheHSSiterationmethodisef?cientandrobustforsolvingnon-Hermitianpositivedefinitelinearsystems.Whenthecoef?cientmatrixA∈Cn×nisnonsingularandpositivesemidefinite,i.e.,itsHermitianpartH(A)∈Cn×nisHermitianpositivesemidefinite,Baietal.[5]11123

Onsemi-convergenceofHSSmethod173provedthattheHSSiterationisconvergentifandonlyifAdoesnothavea(reducing)eigenvalueoftheform?ξwithξ∈Rand?theimaginaryunit,orequivalently,thenullspaceofH(A),denotedasnull(H(A)),doesnotcontainaneigenvectorofS(A).Thisresultimmediatelyleadstoanecessaryandsuf?cientconditionforguaranteeingtheunconditionalconvergenceoftheHSSiterationmethodwhenitisusedtosolvethesaddle-pointproblem

??

Ax≡BE??EC??????????yf=≡b,zg

whereB∈Cp×pispositivedefinite,C∈Cq×qisHermitianpositivesemidefinite,E∈Cp×qisoffullcolumnrank,andp≥q.NotethattheconvergencetheoremgiveninBenziandGolub[12]isaspecialcaseofthisresult;seealso[3,10]andreferencestherein.

Inthispaper,wegiveanecessaryandsuf?cientconditionforanarbitrarysingu-lar,non-Hermitian,andpositivesemidefinitelinearsystemsothattheHSSiterationmethodwillleadtoasemi-convergentiterationsequence.Inparticular,thisresultimmediatelygivesanecessaryandsuf?cientconditionforguaranteeingthesemi-convergenceoftheHSSiterationmethodappliedtothesaddle-pointproblemofasingularandpositivesemidefinitecoef?cientmatrix.Wetheninvestigatethesemi-convergencefactorandestimateitsupperboundfortheHSSiterationmethod.Itisshownthatthesemi-convergencerateoftheHSSiterationmethodisaboutthesameasthatoftheconjugategradientmethodappliedtothesymmetrizedlinearsystemofthecoef?cientmatrixbeingH(A).Moreover,anupperboundofthesemi-conver-gencefactorisobtainedintermsofthelargestandthesmallestnonzeroeigenvaluesofH(A).Inaddition,weinvestigatethepreconditioningpropertyoftheHSSpre-conditionerinducedfromtheHSSiterationmethodand,inparticular,wediscussthesemi-convergencebehavioroftheHSS-preconditionedGMRESmethod.Severalexamplesarisingfromthe?nitedifferencediscretizationsofsecond-orderdifferentialequationsofperiodicboundaryconditionsareusedtoillustratethetheoreticalresultsandexaminethecomputationaleffectivenessoftheHSSiterationmethodservedeitherasapreconditionerforGMRESorasasolver.

2Notationsandconcepts

ForamatrixW∈Cn×n,rank(W)andindex(W)areusedtorepresentitsrankandindex,respectively.FortwomatricesA1andA2ofsuitabledimensions,weuseA1⊕A2todenotetheirdirectsum,i.e.,

??

A1⊕A2=A10

0A2??.

AssumethatamatrixA∈Cn×ncanbesplitas

A=M?N,(2.2)

123

174Z.-Z.BaiwithM∈Cn×nnonsingular.Thenwecanconstructasplittingiterationmethodas

x(k+1)=Tx(k)+c,k=0,1,2,...,(2.3)

whereT=M?1Nistheiterationmatrix,andc=M?1b.Obviously,avectorx∈Cnisasolutionofthelinearsystem(1.1)ifandonlyif(I?T)x=c;see[13,18].

Theconvergenceandsemi-convergenceoftheiterativescheme(2.3)havebeenstudiedextensively;see,e.g.,[11,13,22,24].WhenAissingular,then1isaneigen-valueoftheiterationmatrixT.Moreover,whenthespectralradiusoftheiterationmatrixTisequaltoone,i.e.,ρ(T)=1,thefollowingtwoconditionsarenecessaryandsuf?cientforguaranteeingthesemi-convergenceoftheiterativemethod(2.3):(a)TheelementarydivisorsoftheiterationmatrixTassociatedwithitseigenvalue

μ=1arelinear;(b)Ifμ∈σ(T),thespectrumoftheiterationmatrixT,satisfying|μ|=1,thenμ=1,i.e.,?(T)<1,where

?(T)≡max{|μ||μ∈σ(T),μ=1}.

WeremarkthatforanonsingularmatrixA,thesemi-convergenceconceptofthecor-respondinglyinducedmatrixsplittingoriterationmatrixcoincideswiththestandardconvergenceconcept.

From[13]weknowthatthesplitting(2.2)orthecorrespondingiterationmatrixTiscalledsemi-convergent,iftheiteration(2.3)issemi-convergent.Inthiscase,wede?ne?(T)asthesemi-convergencefactoroftheiteration(2.3).

TheHSSiterationmethodcanberewritteninmatrix-vectorformas

x(k+1)=T(α)x(k)+G(α)b,

where

T(α)=(αI+S(A))?1(αI?H(A))(αI+H(A))?1(αI?S(A))

and

G(α)=2α(αI+S(A))?1(αI+H(A))?1.

Here,T(α)istheiterationmatrixoftheHSSiterationmethod.NotethatT(α)issimilartothematrix

L(α)=(αI+H(A))?1(αI?H(A))(αI+S(A))?1(αI?S(A)).

Infact,(2.4)mayalsoresultfromthesplitting

A=M(α)?N(α)(2.6)(2.5)k=0,1,2,...,(2.4)

123

Onsemi-convergenceofHSSmethod175ofthecoef?cientmatrixA,with

??M(α)=N(α)=1(αI1(αI+H(A))(αI+S(A)),?H(A))(αI?S(A)).

Evidently,theHSSiterationmethodcannaturallyinduceapreconditionerM(α)tothematrixA.ThispreconditioneriscalledastheHSSpreconditioner;see[3,10,12].Forothertypesofpreconditionersaboutanon-Hermitianmatrix,wereferto[15,16,19,25].

3Thesemi-convergenceoftheHSSiterationmethod

We?rstrevealabasicrelationshipbetweenasingularmatrixanditsHermitianandskew-Hermitianparts.

Lemma3.1LetA∈Cn×nbeasingularandpositivesemidefinitematrix,andH(A)andS(A)beitsHermitianandskew-Hermitianparts,respectively.Then

null(A)=null(H(A))∩null(S(A)).

ProofEvidently,

null(H(A))∩null(S(A))?null(A).

Hence,weonlyneedtodemonstratetheinclusionrelationship

null(A)?null(H(A))∩null(S(A)).

Infact,foranx∈null(A)wehave

0=Ax=H(A)x+S(A)x.

Let

x?H(A)x+x?S(A)x=μ+?ν,

withμ,ν∈R.Then

x?H(A)x=μ=0.

SinceH(A)isHermitianpositivesemidefinite,x?H(A)x=0impliesH(A)x=0.Thus,byusing(3.7),weimmediatelygetS(A)x=Ax?H(A)x=0.Hence,x∈null(H(A))∩null(S(A)).????FromLemma3.1,wegetthefollowingconclusion.(3.7)

123

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
七年级英语下册 上海牛津版 Unit3
外研版英语七年级下册module1unit3名词性物主代词讲解
3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
《空中课堂》二年级下册 数学第一单元第1课时
化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
冀教版英语四年级下册第二课
【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
人教版历史八年级下册第一课《中华人民共和国成立》
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
小学英语单词
8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
沪教版八年级下次数学练习册21.4(2)无理方程P19
沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
北师大版数学 四年级下册 第三单元 第二节 小数点搬家
七年级下册外研版英语M8U2reading
冀教版小学数学二年级下册1
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
二年级下册数学第二课
化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
北师大版数学四年级下册3.4包装
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
二年级下册数学第一课
冀教版小学英语五年级下册lesson2教学视频(2)