A Ricardian analysis of the impact of climate change on agriculture in Germany
上传者:丛屾|上传时间:2015-05-10|密次下载
A Ricardian analysis of the impact of climate change on agriculture in Germany
ClimaticChange(2009)97:593–610
DOI10.1007/s10584-009-9652-9
ARicardiananalysisoftheimpactofclimatechange
onagricultureinGermany
C.Lippert·T.Krimly·J.Aurbacher
Received:14March2008/Accepted:22May2009/Publishedonline:18August2009
©SpringerScience+BusinessMediaB.V.2009
AbstractBasedonaRicardiananalysisaccountingforspatialautocorrelationandrelyingonrecentclimatechangeforecastsatalowspatialscale,thisstudyassessestheimpactofclimatechangeonGermanagriculture.Giventhelimitedavailabilityofdata(e.g.,theunknownaveragesoilqualityatthedistrictlevel),aspatialerrormodelisusedinordertoobtainunbiasedmarginaleffects.TheRicardiananalysisisperformedusingdatafromthe1999agriculturalcensusalongwithdatafromthenetworkofGermanweatherobservationstations.Thecross-sectionalanalysisyieldsanincreaseoflandrentalongwithbotharisingmeantemperatureandadecliningspringprecipitation,exceptforintheEasternpartofthecountry.ThesubsequentsimulationoflocallandrentchangesunderthreedifferentIPCCscenariosisdonebyenteringintotheestimatedregressionequationsspatiallyprocesseddataaveragesfortheperiodbetween2011and2040fromtheregionalclimatemodelREMO.Theresultingexpectedbene?tsarisingfromclimatechangearerepresentedinmapscontainingthe439Germandistricts;thecalculatedoverallrentincreasecorrespondstoapproximately5–6%ofnetGermanagriculturalincome.However,inthelongrun,whentemperatureandprecipitationchangeswillbemoreseverethanthosesimulatedfor2011–2040,incomelossesforGermanagriculturecannotbeexcluded.1Introduction:climatechangeinGermany
Asaconsequenceofthegreenhouseeffect,anon-goingchangeoftheglobalclimateisprojectedforthenextdecades.TheIPCCreport(2007a)expectsanincreaseofthemeanglobaltemperatureby1.8?Cto4.0?C.Furthermore,precipitationandtheoccurrenceofextremeweathereventswillincrease.Overthepast100yearsthe
C.Lippert(B)·T.Krimly·J.Aurbacher
InsititueforFarmManagement(410a),SectionofProductionTheoryandResource
Economics,UniversitätHohenheim,SchlossOsthof-Süd,70593Stuttgart,Germany
e-mail:clippert@uni-hohenheim.de
594ClimaticChange(2009)97:593–610averagetemperatureincreaseinEuropewas1?C,comparedtoaglobalaveragetemperatureincreaseofabout0.7?C(IPCC2007a).ThemeantemperatureinEuropeisexpectedtoincreaseby2.1?Cto5.3?Cbytheendofthiscentury;again,Europeshowsastrongerwarmingtrendthantheglobalaverage.Sinceagricultureisaneconomicactivitywhichstronglydependsontheclimatesettingandisparticularlyresponsivetoclimatechanges,itisimportanttounderstandhowsuchchangesmayaffectagriculturalproductivityandpro?tability.
Inprinciple,therearetwomainapproachestoassessingtheimpactofclimatechange(Mendelsohn2007):onewayistorunsimulationmodels,theparametersofwhichhavetobeobtainedfromcontrolledexperiments;theotherwayistoconductacross-sectionalanalysisobservingthe(economic)systemacrossdifferentlocationsinordertodeterminehowthesystemmayadapttodifferentclimates.Thismethod,usuallyreferredtoasaRicardianapproach,http://wendang.chazidian.comingobservedlandprices,itsbasicpurposeis“[...]toinferthewillingnesstopayinagriculturetoavoida3?Ctemperaturerise(forexample)byexaminingtwoagriculturalareasthatarethesameinallrespectsexceptthatonehasaclimateonaverage3?Cwarmerthantheother”(Kolstad2000:317;forabroaderdescriptionoftheunderlyingtheorycf.Mendelsohnetal.1994;MendelsohnandReinsborough2007:10f.;Lang2007:425f.).Inthecaseofcompetitivemarkets,assumingthatlandpricesatdifferentlocationshavereachedtheirlong-runequilibrium,thisapproachaccountsforboththedirecteffectsofclimateoncropyieldsandtheindirecteffectsresultingfromthesubstitutionoradaptationoffarmingactivities.
WhereastheRicardianapproachhasbeenfrequentlyusedforNorthernAmerica(e.g.,Mendelsohnetal.1994;PolskyandEasterling2001;Schlenkeretal.2005,2006;DeschênesandGreenstone2007;MendelsohnandReinsborough2007),http://wendang.chazidian.comng(2007)analysedweatherdataalongwith1990through1994paneldatafromfarmersinformerWestGermany,andfound,amongotherresults,aninverselyu-shapedrelationshipbetweenthelocaltemperaturesumduringthegrowingseasonandlandrentalprices.Hepredictedthat“[...]Germanfarmerswillbewinnersofclimaticchangeintheshortrun,withmaximumgainsoccurringatatemperatureincreaseof+0.6?Cagainstcurrentlevels”(Lang2007:423).
Whencomparedwiththementionedexperimental-simulationapproach,onead-vantageofaRicardiananalysisisthatitisbasedonreal-worldadaptationmeasureswhichhavebeenbroughtaboutbyatrial-and-errorprocessinvolvingmanyfarmerswellacquaintedwiththeirspeci?clocalproductionconditions.AmajorweaknessoftheRicardianapproachconsistsintheinadequacyofextrapolatingitforclimaticsettings(e.g.,temperature,CO2-fertilisation)whichhavenotbeenobservedsofar(i.e.,settingswhicharenotcoveredbythedatasetusedtoestimatetheHedonicPricingfunction).Furthermore,theapproach“mustworkhardnottobebiasedbyomittedvariablesthatarecorrelatedwithclimate”(Mendelsohn2007:2).
OnepromisingwaytocopewiththeproblemofspatialautocorrelationistoexplicitlyconsiderspatialautocorrelationoftheresidualswhenestimatingtheparametersoftheHedonicPricingmodel.Uptonow,thishasrarelybeendoneinthecontextofclimatechangeimpactassessment.ExceptionsareSchlenkeretal.(2006:116),DeschênesandGreenstone(2007:366),whoadjustedthestandarderrorsoftheirestimatedmodelsforspatialdependence,andtoacertainextentPolskyand
ClimaticChange(2009)97:593–610595Easterling(2001),whoincludedadditionalexplanatoryvariablesreferringtoalargerspatialscale(districts)intheircounty-basedanalysis.
Ourapproachtakesonlylong-termclimaticvariablesintoconsiderationalthoughSchlenkerandRoberts(2006)indicatethatalreadysingledayeventscanhavesigni?cantin?uenceonyields.However,dailyweatherdataforGermanywasnotavailabletous.DeschênesandGreenstone(2007)criticizedtheRicardianapproachwhichintheiranalysisturnedouttobestronglyin?uencedamongotherthingsbythechoiceofvariablesincludedintotheestimatedequation.Alternatively,theysuggestedandappliedanapproachwheretheyusedtheobservedyear-to-yearvariationofprecipitationandtemperaturetoexplainagriculturalpro?tsintheUnitedStates.However,astheyadmit,indoingsofarmers’damagesduetoclimaticchangearesystematicallyoverstatedbecausethestatisticalmodelthendoesnotaccountforcompleteadaptationwhichisimpossiblewhenonlyreactingtotheweathereventsofsingleyears.
TheobjectiveofthispaperistoassesstheimpactofclimatechangeonGermanagricultureusingrecentclimatechangeforecastsatalowspatialscale,relyingonaRicardiananalysiswhichaccountsforspatialautocorrelation.Inthenextsectionwewillpresentanappropriatestatisticalmodelrelyingonaspatialweightmatrix(Section2.1)aswellasthedata(Section2.2)thatwill?nallybeusedtoestimatetwoHedonicPricingfunctions(Section2.3).Then,bymeansofthesefunctions,theeconomicimpactofthreedifferentclimatechangescenarios(Section3.1)onthepro?tabilityofGermanAgriculturewillbepresented(Section3.2)anddiscussed(Section4).
2Empiricalanalysis
2.1Statisticalmodel
Inthefollowing,afunctionalrelationshipbetweentherentalpriceriforfarmlandatlocationianddifferentexogenousfactorsxcandxncisassumed:
ri=f(xc,xnc),(1)
wherexcisavectorofclimatecharacteristicssuchasmeanannualtemperatureoraverageprecipitationindifferentmonths,andxncstandsforavectorofnon-climatevariablessuchasgrasslandshareofoverallagriculturallandorsoilquality.Sinceitisimpossibletoobtainsuf?cientdataforallrelevantvariablesxncwhenestimatingtheHedonicPricingfunction1,weexplicitlyconsideredspatialautocorrelation.Equations2and3outlinethegeneralversionofacorrespondingspatiallyautoregres-sivemodel(Anselin1988:34ff.;LeSage1999:52f.)whichaccountsforbothspatiallagdependenceandspatialerrordependence(cf.PattonandMcErlean2003:37):
r=ρW1r+Xβ+u
u=λW2u+ε
with
????ε?N0,σ2I,(2)(3)
596ClimaticChange(2009)97:593–610where
r
X
Ws
I
u
εn×1vectorcontainingthereportedaveragefarmlandrentalprices,eachassociatedwithaspeci?cadministrativedistricti(i=1,...,n);n×(1+k)designmatrixcontainingasetofobservationsforkexplanatoryclimateandnon-climatevariables;givenn×nspatialweightmatrices(s=1,2;W1andW2maybeidentical);n×nidentitymatrix;n×1vectorofthespatiallycorrelatedresiduals;
n×1vectorofnormallydistributederrors(mean=0,variance=σ2).
Theparameterstobeestimatedare
ρβ
λspatiallagcoef?cient;(1+k)×1vectorcontainingtheregressioncoef?cientsfortheexplanatoryvariables;
coef?cientre?ectingthespatialautocorrelationoftheresidualsui.
Forthefollowingestimations,wewillalwaysuseastandardised?rst-ordercontigu-itymatrix(W=W1=W2).Noticethatsuchamatrixre?ectssimpleneighbourhoodalone(inourcasebetweenthen=439districtsofGermany):ineveryrowia0isassignedtoeverydistrictj=ithatdoesnotadjoinwithdistricti;thesameisdoneforalldiagonalelementsofthen×nmatrix.Whentwodistrictsiandjarecontiguous,1/giwillbeassignedtotheintersectionoftheithrowandthejthcolumn(wheregiisthenumberofdistrictswhichhaveacommonborderwithdistricti).WithWsetuplikethis,then×1vectorWrgivesforeverydistrictithemeanrentalpriceobservedinitscontiguousdistricts.Asigni?cantpositiveparameterρwouldhintataself-enforcingeffectofhigherfarmlandrentalprices(acaseofspatialdependencyofrentalprices).SolvingEq.3forthevectorofthespatiallycorrelatedresiduals(u)andenteringtheresultingtermintoEq.2gives:
r=ρWr+Xβ+(I?λW)?1ε
<=>(I?λW)r=(I?λW)ρWr+(I?λW)Xβ+ε
<=>r=ρWr+λW(r?ρWr)+Xβ?λWXβ+ε.(4)(4a)
Aproblemoccurswhenoneormoreoftheoftenspatiallycorrelatedfactorswhichin?uencerentalpricesarenotaccountedforinthestatisticalmodel,ascanbeeasilydemonstratedbylookingatEq.4a:neglectingpossiblespatialdependency(i.e.,assumingρ≈0),Eq.4aisreducedto
ε
<=>ε==r?Xβ?λWr+λWXβu?λWr+λWXβ.(4b*)
IfallrelevantexplanatoryvariableswerecontainedinX,thevaluesriwouldincreaseanddecreaseinlinewithXiβ(apartfromthe“whitenoise”ε;i.e.,ε=u).Theparameterλthenwouldbeclosetozero.Ontheotherhand,ifimportantspatiallycorrelatedexplanatoryvariableswerenotcontainedinXβ,theresidualsuiwouldhavetobecorrectedbyλWrinordertoobtainavectorofnormallydistributed
ClimaticChange(2009)97:593–610597residualsε.(Notethatinthelattercase,λWXβwillcontainonlynormallydistributedelements,whereasλWrwillpositivelydependonu.)Asigni?cantvalueforλmeansthatthereisatleastonespatiallycorrelatedfeaturewhichisnotre?ectedbytheexogenousvariablesusedinthemodel,butwhichaffectstheobservedrentalprice.Subsequentregressionanalysesalwaysyieldedahighlysigni?cantMoran’sIaswellasahighlysigni?cantvalueforλ(whichindicatesthatsomeoftherelevantexplanatoryvariablesxcandxncwerenotincludedinX),whereasasigni?cantparameterρcouldnotbefound.Consequently,ourparameterestimatespresentedinthefollowingarebasedonthesimplespatialerrormodel:
r=Xβ+(I?λW)?1ε.(4b)
TheEq.4bwereestimatedusingMATLABalongwiththe“EconometricsToolbox”byLeSage(2003)(forthespatialerrormodelandtheiterativemaximumlikelihoodestimationemployed,cf.LeSage1999:48f.).
2.2Data
SourcesforlanddataDataregardingthedistricts’utilisableagriculturalarea(UAA)andthegrasslandshareofthatareaweretakenfromthe1999agriculturalcensus(StatistischeÄmterdesBundesundderLänder2001).Alltogether,theUAAofthe439Germandistrictsamountedtoatotalof17,157,906hectares.The1999yearlyrentalpricerforfarmland(inEuroperhectareUAA)bydistrict(Landkreis)waskindlycommunicatedbyStatistischesLandesamtBaden-Württemberg(2007).For14ofthe439Germandistricts,partoftheagriculturalcensusdatawaslackingandhadtobereplacedbycarefulassumptionsbasedonobservationsfromsimilardistricts(usingaspatialweightmatrixW,itwasimpossibletoomitthecorrespondingdistrictsfromtheanalysis).Relyingonrentalpricesinsteadoffarmlandpriceshastheadvantagethatweneednotconsidersomefactorswhichstronglydistortfarmlandprices,especiallyinthedenselypopulatedregionsofCentralEurope.Forexample,thehighpricesforfarmlandwhichmaybecomebuildinglandinthemediumtermhavenothingtodowithrealagriculturalproductivity.RentingfarmlandisquitecommoninGermany:in1999,68.4%ofGermanfarmsrentedatleastpartoftheirland;theshareofrentedlandwasabout50%ofoverallcultivatedfarmlandinWestGermanyandabout90%inEastGermany(BMVEL2001:12).Sincelandrentcontractsalwaysexpireaftersomeyearsthereportedlandrentalpricestobepaidonayearlybasisbythetenant(whoisnotentitledtosellthelandandwhowillnotbene?tfromalandsalebytheowner)donotcontaintheoptionvalueofthecorrespondingplotsoflandforapossibleurbandevelopment.Theyarejustre?ectingtheagriculturalproductivityoftheland.Incontrast,purchasepricesforfarmlandalsoincludethementionedoptionvalue.
SourcesforclimatedataThisanalysisuseddatafromweatherobservationstationsfromtheGermanWeatherService(DWD2007).Thisdatasetcontainsthelatitudeandlongitudeofthestation(ingeographiccoordinates),altitude,andaveragesoftemperature,precipitationandsunshinedurationover30years(1961–1990)forthewholeyearandforeachmonth.Theprecipitationdatasetconsistsof4748stations,whilethedatasetfortemperaturesincludes675stations.Forthefuturescenarios,climatedatafromtheREMOmodel(MPIonbehalfoftheUmweltbundesamt2006)
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 夸家乡写话和春游日记评讲Word
- 2014年托福写作中如何巧用倒装句
- 无尘车间装修施工注意事项及要求
- 寻找不一般的易班宝藏 (2)
- 小政府与大市场:服务和管理奏乐章
- 消防培训Word
- 三个儿子Word
- 大连雅思培训之雅思大作文如此构思才引好感
- 第五节、破坏金融管理秩序罪Word
- 增强马克思主义研究的整体性
- 归去来兮辞
- 客服人员话术及常出问题的解决办法
- 物资购置申请表
- 物权与知识产权的辨析Word
- 血防健康教育责任状
- 项目责任人管理办法
- 常用“阿语、汉语”对照手册
- 安妮日记读后感
- 发电生产专项指标奖惩管理办法
- 考研“真人书”上架啦
- 二年级下册数学基础知识复习题答案
- 增值型内部审计研究——基于完善的公司治理结构
- Unit 5 what were you doing when the rainstorm came Section A (1a—2d)Word
- 南宁市盲聋哑学校-消防安全教育-22pWord
- 操作规程考核记录
- 消防安全教育课件-25pWord
- 南昌西班牙语培训哪里好
- 2017工会工作计划
- 设计变更管理规定
- XXX地区危险化学品运输泄漏事故演练脚本
网友关注视频
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
- 冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 冀教版小学英语四年级下册Lesson2授课视频
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 外研版英语七年级下册module3 unit2第一课时
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 小学英语单词
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 苏教版二年级下册数学《认识东、南、西、北》
- 苏科版八年级数学下册7.2《统计图的选用》
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 冀教版小学数学二年级下册1
- 苏科版数学七年级下册7.2《探索平行线的性质》
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
- 冀教版小学数学二年级下册第二单元《余数和除数的关系》
- 冀教版英语三年级下册第二课
- 精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 冀教版英语五年级下册第二课课程解读
- 三年级英语单词记忆下册(沪教版)第一二单元复习
- 外研版英语七年级下册module3 unit2第二课时
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
- 河南省名校课堂七年级下册英语第一课(2020年2月10日)
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理