教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 人文社科> 哲学/历史> A Ricardian analysis of the impact of climate change on agriculture in Germany

A Ricardian analysis of the impact of climate change on agriculture in Germany

ClimaticChange(2009)97:593–610

DOI10.1007/s10584-009-9652-9

ARicardiananalysisoftheimpactofclimatechange

onagricultureinGermany

C.Lippert·T.Krimly·J.Aurbacher

Received:14March2008/Accepted:22May2009/Publishedonline:18August2009

©SpringerScience+BusinessMediaB.V.2009

AbstractBasedonaRicardiananalysisaccountingforspatialautocorrelationandrelyingonrecentclimatechangeforecastsatalowspatialscale,thisstudyassessestheimpactofclimatechangeonGermanagriculture.Giventhelimitedavailabilityofdata(e.g.,theunknownaveragesoilqualityatthedistrictlevel),aspatialerrormodelisusedinordertoobtainunbiasedmarginaleffects.TheRicardiananalysisisperformedusingdatafromthe1999agriculturalcensusalongwithdatafromthenetworkofGermanweatherobservationstations.Thecross-sectionalanalysisyieldsanincreaseoflandrentalongwithbotharisingmeantemperatureandadecliningspringprecipitation,exceptforintheEasternpartofthecountry.ThesubsequentsimulationoflocallandrentchangesunderthreedifferentIPCCscenariosisdonebyenteringintotheestimatedregressionequationsspatiallyprocesseddataaveragesfortheperiodbetween2011and2040fromtheregionalclimatemodelREMO.Theresultingexpectedbene?tsarisingfromclimatechangearerepresentedinmapscontainingthe439Germandistricts;thecalculatedoverallrentincreasecorrespondstoapproximately5–6%ofnetGermanagriculturalincome.However,inthelongrun,whentemperatureandprecipitationchangeswillbemoreseverethanthosesimulatedfor2011–2040,incomelossesforGermanagriculturecannotbeexcluded.1Introduction:climatechangeinGermany

Asaconsequenceofthegreenhouseeffect,anon-goingchangeoftheglobalclimateisprojectedforthenextdecades.TheIPCCreport(2007a)expectsanincreaseofthemeanglobaltemperatureby1.8?Cto4.0?C.Furthermore,precipitationandtheoccurrenceofextremeweathereventswillincrease.Overthepast100yearsthe

C.Lippert(B)·T.Krimly·J.Aurbacher

InsititueforFarmManagement(410a),SectionofProductionTheoryandResource

Economics,UniversitätHohenheim,SchlossOsthof-Süd,70593Stuttgart,Germany

e-mail:clippert@uni-hohenheim.de

594ClimaticChange(2009)97:593–610averagetemperatureincreaseinEuropewas1?C,comparedtoaglobalaveragetemperatureincreaseofabout0.7?C(IPCC2007a).ThemeantemperatureinEuropeisexpectedtoincreaseby2.1?Cto5.3?Cbytheendofthiscentury;again,Europeshowsastrongerwarmingtrendthantheglobalaverage.Sinceagricultureisaneconomicactivitywhichstronglydependsontheclimatesettingandisparticularlyresponsivetoclimatechanges,itisimportanttounderstandhowsuchchangesmayaffectagriculturalproductivityandpro?tability.

Inprinciple,therearetwomainapproachestoassessingtheimpactofclimatechange(Mendelsohn2007):onewayistorunsimulationmodels,theparametersofwhichhavetobeobtainedfromcontrolledexperiments;theotherwayistoconductacross-sectionalanalysisobservingthe(economic)systemacrossdifferentlocationsinordertodeterminehowthesystemmayadapttodifferentclimates.Thismethod,usuallyreferredtoasaRicardianapproach,http://wendang.chazidian.comingobservedlandprices,itsbasicpurposeis“[...]toinferthewillingnesstopayinagriculturetoavoida3?Ctemperaturerise(forexample)byexaminingtwoagriculturalareasthatarethesameinallrespectsexceptthatonehasaclimateonaverage3?Cwarmerthantheother”(Kolstad2000:317;forabroaderdescriptionoftheunderlyingtheorycf.Mendelsohnetal.1994;MendelsohnandReinsborough2007:10f.;Lang2007:425f.).Inthecaseofcompetitivemarkets,assumingthatlandpricesatdifferentlocationshavereachedtheirlong-runequilibrium,thisapproachaccountsforboththedirecteffectsofclimateoncropyieldsandtheindirecteffectsresultingfromthesubstitutionoradaptationoffarmingactivities.

WhereastheRicardianapproachhasbeenfrequentlyusedforNorthernAmerica(e.g.,Mendelsohnetal.1994;PolskyandEasterling2001;Schlenkeretal.2005,2006;DeschênesandGreenstone2007;MendelsohnandReinsborough2007),http://wendang.chazidian.comng(2007)analysedweatherdataalongwith1990through1994paneldatafromfarmersinformerWestGermany,andfound,amongotherresults,aninverselyu-shapedrelationshipbetweenthelocaltemperaturesumduringthegrowingseasonandlandrentalprices.Hepredictedthat“[...]Germanfarmerswillbewinnersofclimaticchangeintheshortrun,withmaximumgainsoccurringatatemperatureincreaseof+0.6?Cagainstcurrentlevels”(Lang2007:423).

Whencomparedwiththementionedexperimental-simulationapproach,onead-vantageofaRicardiananalysisisthatitisbasedonreal-worldadaptationmeasureswhichhavebeenbroughtaboutbyatrial-and-errorprocessinvolvingmanyfarmerswellacquaintedwiththeirspeci?clocalproductionconditions.AmajorweaknessoftheRicardianapproachconsistsintheinadequacyofextrapolatingitforclimaticsettings(e.g.,temperature,CO2-fertilisation)whichhavenotbeenobservedsofar(i.e.,settingswhicharenotcoveredbythedatasetusedtoestimatetheHedonicPricingfunction).Furthermore,theapproach“mustworkhardnottobebiasedbyomittedvariablesthatarecorrelatedwithclimate”(Mendelsohn2007:2).

OnepromisingwaytocopewiththeproblemofspatialautocorrelationistoexplicitlyconsiderspatialautocorrelationoftheresidualswhenestimatingtheparametersoftheHedonicPricingmodel.Uptonow,thishasrarelybeendoneinthecontextofclimatechangeimpactassessment.ExceptionsareSchlenkeretal.(2006:116),DeschênesandGreenstone(2007:366),whoadjustedthestandarderrorsoftheirestimatedmodelsforspatialdependence,andtoacertainextentPolskyand

ClimaticChange(2009)97:593–610595Easterling(2001),whoincludedadditionalexplanatoryvariablesreferringtoalargerspatialscale(districts)intheircounty-basedanalysis.

Ourapproachtakesonlylong-termclimaticvariablesintoconsiderationalthoughSchlenkerandRoberts(2006)indicatethatalreadysingledayeventscanhavesigni?cantin?uenceonyields.However,dailyweatherdataforGermanywasnotavailabletous.DeschênesandGreenstone(2007)criticizedtheRicardianapproachwhichintheiranalysisturnedouttobestronglyin?uencedamongotherthingsbythechoiceofvariablesincludedintotheestimatedequation.Alternatively,theysuggestedandappliedanapproachwheretheyusedtheobservedyear-to-yearvariationofprecipitationandtemperaturetoexplainagriculturalpro?tsintheUnitedStates.However,astheyadmit,indoingsofarmers’damagesduetoclimaticchangearesystematicallyoverstatedbecausethestatisticalmodelthendoesnotaccountforcompleteadaptationwhichisimpossiblewhenonlyreactingtotheweathereventsofsingleyears.

TheobjectiveofthispaperistoassesstheimpactofclimatechangeonGermanagricultureusingrecentclimatechangeforecastsatalowspatialscale,relyingonaRicardiananalysiswhichaccountsforspatialautocorrelation.Inthenextsectionwewillpresentanappropriatestatisticalmodelrelyingonaspatialweightmatrix(Section2.1)aswellasthedata(Section2.2)thatwill?nallybeusedtoestimatetwoHedonicPricingfunctions(Section2.3).Then,bymeansofthesefunctions,theeconomicimpactofthreedifferentclimatechangescenarios(Section3.1)onthepro?tabilityofGermanAgriculturewillbepresented(Section3.2)anddiscussed(Section4).

2Empiricalanalysis

2.1Statisticalmodel

Inthefollowing,afunctionalrelationshipbetweentherentalpriceriforfarmlandatlocationianddifferentexogenousfactorsxcandxncisassumed:

ri=f(xc,xnc),(1)

wherexcisavectorofclimatecharacteristicssuchasmeanannualtemperatureoraverageprecipitationindifferentmonths,andxncstandsforavectorofnon-climatevariablessuchasgrasslandshareofoverallagriculturallandorsoilquality.Sinceitisimpossibletoobtainsuf?cientdataforallrelevantvariablesxncwhenestimatingtheHedonicPricingfunction1,weexplicitlyconsideredspatialautocorrelation.Equations2and3outlinethegeneralversionofacorrespondingspatiallyautoregres-sivemodel(Anselin1988:34ff.;LeSage1999:52f.)whichaccountsforbothspatiallagdependenceandspatialerrordependence(cf.PattonandMcErlean2003:37):

r=ρW1r+Xβ+u

u=λW2u+ε

with

????ε?N0,σ2I,(2)(3)

596ClimaticChange(2009)97:593–610where

r

X

Ws

I

u

εn×1vectorcontainingthereportedaveragefarmlandrentalprices,eachassociatedwithaspeci?cadministrativedistricti(i=1,...,n);n×(1+k)designmatrixcontainingasetofobservationsforkexplanatoryclimateandnon-climatevariables;givenn×nspatialweightmatrices(s=1,2;W1andW2maybeidentical);n×nidentitymatrix;n×1vectorofthespatiallycorrelatedresiduals;

n×1vectorofnormallydistributederrors(mean=0,variance=σ2).

Theparameterstobeestimatedare

ρβ

λspatiallagcoef?cient;(1+k)×1vectorcontainingtheregressioncoef?cientsfortheexplanatoryvariables;

coef?cientre?ectingthespatialautocorrelationoftheresidualsui.

Forthefollowingestimations,wewillalwaysuseastandardised?rst-ordercontigu-itymatrix(W=W1=W2).Noticethatsuchamatrixre?ectssimpleneighbourhoodalone(inourcasebetweenthen=439districtsofGermany):ineveryrowia0isassignedtoeverydistrictj=ithatdoesnotadjoinwithdistricti;thesameisdoneforalldiagonalelementsofthen×nmatrix.Whentwodistrictsiandjarecontiguous,1/giwillbeassignedtotheintersectionoftheithrowandthejthcolumn(wheregiisthenumberofdistrictswhichhaveacommonborderwithdistricti).WithWsetuplikethis,then×1vectorWrgivesforeverydistrictithemeanrentalpriceobservedinitscontiguousdistricts.Asigni?cantpositiveparameterρwouldhintataself-enforcingeffectofhigherfarmlandrentalprices(acaseofspatialdependencyofrentalprices).SolvingEq.3forthevectorofthespatiallycorrelatedresiduals(u)andenteringtheresultingtermintoEq.2gives:

r=ρWr+Xβ+(I?λW)?1ε

<=>(I?λW)r=(I?λW)ρWr+(I?λW)Xβ+ε

<=>r=ρWr+λW(r?ρWr)+Xβ?λWXβ+ε.(4)(4a)

Aproblemoccurswhenoneormoreoftheoftenspatiallycorrelatedfactorswhichin?uencerentalpricesarenotaccountedforinthestatisticalmodel,ascanbeeasilydemonstratedbylookingatEq.4a:neglectingpossiblespatialdependency(i.e.,assumingρ≈0),Eq.4aisreducedto

ε

<=>ε==r?Xβ?λWr+λWXβu?λWr+λWXβ.(4b*)

IfallrelevantexplanatoryvariableswerecontainedinX,thevaluesriwouldincreaseanddecreaseinlinewithXiβ(apartfromthe“whitenoise”ε;i.e.,ε=u).Theparameterλthenwouldbeclosetozero.Ontheotherhand,ifimportantspatiallycorrelatedexplanatoryvariableswerenotcontainedinXβ,theresidualsuiwouldhavetobecorrectedbyλWrinordertoobtainavectorofnormallydistributed

ClimaticChange(2009)97:593–610597residualsε.(Notethatinthelattercase,λWXβwillcontainonlynormallydistributedelements,whereasλWrwillpositivelydependonu.)Asigni?cantvalueforλmeansthatthereisatleastonespatiallycorrelatedfeaturewhichisnotre?ectedbytheexogenousvariablesusedinthemodel,butwhichaffectstheobservedrentalprice.Subsequentregressionanalysesalwaysyieldedahighlysigni?cantMoran’sIaswellasahighlysigni?cantvalueforλ(whichindicatesthatsomeoftherelevantexplanatoryvariablesxcandxncwerenotincludedinX),whereasasigni?cantparameterρcouldnotbefound.Consequently,ourparameterestimatespresentedinthefollowingarebasedonthesimplespatialerrormodel:

r=Xβ+(I?λW)?1ε.(4b)

TheEq.4bwereestimatedusingMATLABalongwiththe“EconometricsToolbox”byLeSage(2003)(forthespatialerrormodelandtheiterativemaximumlikelihoodestimationemployed,cf.LeSage1999:48f.).

2.2Data

SourcesforlanddataDataregardingthedistricts’utilisableagriculturalarea(UAA)andthegrasslandshareofthatareaweretakenfromthe1999agriculturalcensus(StatistischeÄmterdesBundesundderLänder2001).Alltogether,theUAAofthe439Germandistrictsamountedtoatotalof17,157,906hectares.The1999yearlyrentalpricerforfarmland(inEuroperhectareUAA)bydistrict(Landkreis)waskindlycommunicatedbyStatistischesLandesamtBaden-Württemberg(2007).For14ofthe439Germandistricts,partoftheagriculturalcensusdatawaslackingandhadtobereplacedbycarefulassumptionsbasedonobservationsfromsimilardistricts(usingaspatialweightmatrixW,itwasimpossibletoomitthecorrespondingdistrictsfromtheanalysis).Relyingonrentalpricesinsteadoffarmlandpriceshastheadvantagethatweneednotconsidersomefactorswhichstronglydistortfarmlandprices,especiallyinthedenselypopulatedregionsofCentralEurope.Forexample,thehighpricesforfarmlandwhichmaybecomebuildinglandinthemediumtermhavenothingtodowithrealagriculturalproductivity.RentingfarmlandisquitecommoninGermany:in1999,68.4%ofGermanfarmsrentedatleastpartoftheirland;theshareofrentedlandwasabout50%ofoverallcultivatedfarmlandinWestGermanyandabout90%inEastGermany(BMVEL2001:12).Sincelandrentcontractsalwaysexpireaftersomeyearsthereportedlandrentalpricestobepaidonayearlybasisbythetenant(whoisnotentitledtosellthelandandwhowillnotbene?tfromalandsalebytheowner)donotcontaintheoptionvalueofthecorrespondingplotsoflandforapossibleurbandevelopment.Theyarejustre?ectingtheagriculturalproductivityoftheland.Incontrast,purchasepricesforfarmlandalsoincludethementionedoptionvalue.

SourcesforclimatedataThisanalysisuseddatafromweatherobservationstationsfromtheGermanWeatherService(DWD2007).Thisdatasetcontainsthelatitudeandlongitudeofthestation(ingeographiccoordinates),altitude,andaveragesoftemperature,precipitationandsunshinedurationover30years(1961–1990)forthewholeyearandforeachmonth.Theprecipitationdatasetconsistsof4748stations,whilethedatasetfortemperaturesincludes675stations.Forthefuturescenarios,climatedatafromtheREMOmodel(MPIonbehalfoftheUmweltbundesamt2006)

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

三年级英语单词记忆下册(沪教版)第一二单元复习
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
六年级英语下册上海牛津版教材讲解 U1单词
七年级英语下册 上海牛津版 Unit5
沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
二年级下册数学第二课
3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
冀教版英语五年级下册第二课课程解读
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
苏科版八年级数学下册7.2《统计图的选用》
沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
3月2日小学二年级数学下册(数一数)
冀教版英语三年级下册第二课
北师大版数学 四年级下册 第三单元 第二节 小数点搬家
人教版二年级下册数学
外研版八年级英语下学期 Module3
沪教版八年级下册数学练习册21.3(2)分式方程P15
第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
沪教版八年级下次数学练习册21.4(2)无理方程P19
化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
外研版英语七年级下册module3 unit1第二课时
外研版英语三起5年级下册(14版)Module3 Unit2
飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs