On Optimal Binary One-Error-Correcting
上传者:甘胜丰|上传时间:2015-04-15|密次下载
On Optimal Binary One-Error-Correcting
OnOptimalBinaryOne-Error-CorrectingCodesofLengthsand
DenisS.Krotov,PatricR.J.Östergård,andOlliPottonen
Abstract—BestandBrouwer[2]provedthattriply-shortened
anddoubly-shortenedbinaryHammingcodes(whichhavelength
and,respectively)areoptimal.Propertiesof
suchcodesareherestudied,determiningamongotherthingsparametersofcertainsubcodes.Autilizationofthesepropertiesmakesacomputer-aidedclassi cationoftheoptimalbinaryone-error-correctingcodesoflengths12and13possible;thereare237610and117823suchcodes,respectively(with27375and17513inequivalentextensions).Thiscompletestheclassi cationofoptimalbinaryone-error-correctingcodesforalllengthsupto15.Somepropertiesoftheclassi edcodesarefurtherinvestigated.Finally,itisprovedthatforany,thereareoptimalbinary
andthatone-error-correctingcodesofcannotbelengthenedtoperfectcodesoflength.IndexTerms—Automorphismgroup,classi cation,clique,error-correctingcode,MacWilliamstransform.
Abinarycodeoflength,size,andminimumdistanceissaidtobeancode.Sinceacodewithminimumdistanceisabletocorrectuptoerrors,suchacodeissaidtobe-error-correcting.Ifeverywordintheambientspaceisatdistanceatmostfromsomecodewordofa-error-correctingcode,thenthecodeiscalledperfect.
Themaximumsizeofabinarycodeoflengthandminimumdistanceisdenotedby;thecorrespondingcodesaresaidtobeoptimal.Forbinarycodesthereisadirectconnectionbetweenoptimalerror-correctingcodeswithoddandevenmin-imumdistance:
(1)
Onegetsfromtheoddcasetotheevencasebyextendingthecodewithaparitybit,andfromtheevencasetotheoddcasebyremovinganarbitrarycoordinate,calledpuncturing.Othertransformationsofcodesincludeshortening,whereacoordinateisdeletedandallcodewordsbutthosewithagivenvalueinthedeletedcoordinateareremoved,andlengtheningwhichisthereverseoperationofshortening.See[1]forthebasictheoryoferror-correctingcodes.
Whenstudyingoptimalerror-correctingcodes—orsubop-timalforthatsake—itisreasonabletorestrictthestudytocodesthatareessentiallydifferentinthefollowingsense.Twobinarycodesaresaidtobeequivalentifthecodewordsofoneofthecodescanbemappedontothoseoftheotherbytheadditionofavectorfollowedbyapermutationofthecoordinates.Suchamappingfromacodeontoitselfisanautomorphismofthecode;thesetofallautomorphismsofacodeformstheautomorphismgroupof,denotedby.
Acodewithonlyeven-weightcodewordsissaidtobeeven.Codesequivalenttoevencodesareofcentralimportanceinthecurrentwork;thesecodeshaveonlyeven-weightcodewordsoronlyodd-weightcodewords,andtheyarecharacterizedbythefactthatthedistancebetweenanytwocodewordsiseven.Wethereforecallsuchcodeseven-distancecodes(nottobecon-fusedwithcodesthathaveevenminimumdistance).
Hammingcodesareperfect(andtherebyoptimal)one-error-correctingcodes:
I.INTRODUCTION
BINARYcodeoflengthisaset,where
isthe eldoforder2.The(Hamming)distancebe-tweenelements,calledwords(orcodewordswhentheybelongtoacode),isthenumberofcoordinatesinwhichtheydifferandisdenotedby.Theminimumdistanceofacodeisthesmallestpairwisedistanceamongdistinctcode-words:
A
The(Hamming)weightofnonzerocoordinates.
ofawordisthenumber
ManuscriptreceivedFebruary18,2011;acceptedApril07,2011.DateofpublicationMay19,2011;dateofcurrentversionOctober07,2011.TheworkofD.S.KrotovwassupportedbytheFederalTargetProgram“Scienti candEdu-cationalPersonnelofInnovationRussia”for2009–2013(GovernmentContract02.740.11.0429)andbytheRussianFoundationforBasicResearchunderGrant10-01-00424.TheworkofP.R.J.ÖstergårdwassupportedbytheAcademyofFinlandunderGrants130142and132122.TheworkofO.Pottonenwassup-portedbytheAcademyofFinlandGrant128823,theHelsinkiInstituteofIn-formationTechnologyHIITproject“AlgorithmicSystems,”andbytheFinnishCulturalFoundation.
D.S.KrotoviswiththeSobolevInstituteofMathematicsandtheMechanicsandMathematicsDepartment,NovosibirskStateUniversity,630090Novosi-birsk,Russia.
P.R.J.ÖstergårdiswiththeDepartmentofCommunicationsandNet-working,AaltoUniversitySchoolofElectricalEngineering,00076Aalto,Finland,andalsowithLehrstuhlfürMathematikII,UniversitätBayreuth,95440Bayreuth,Germany(e-mail:patric.ostergard@tkk. ).
O.PottonenwaswiththeDepartmentofInformationandComputerScience,AaltoUniversitySchoolofScience,00076Aalto,Finland.HeisnowwiththeDepartamentdeLlenguatgesiSistemesInformàtics,UniversitatPolitècnicadeCatalunya,08034Barcelona,Spain.
CommunicatedbyM.Blaum,AssociateEditorforCodingTheory.DigitalObjectIdenti er10.1109/TIT.2011.2147758
BestandBrouwer[2]showedthatbyshorteningHammingcodesone,two,orthreetimes,onestillgetsoptimalcodes:
(2)
0018-9448/$26.00©2011IEEE
Forallbuttheverysmallestparameters,therearemanyin-equivalentcodeswiththeparametersin(2).Ingeneral,acom-pletecharacterizationorclassi cationofsuchcodesdoesnotseemfeasible,buttheclassi cationproblemcanbeaddressedforsmallparametersandgeneralpropertiesofthesecodescanbestudied.Forexample,theissuewhethercodeswiththesepa-rameterscanbelengthenedtoperfectcodeshasattractedsomeinterestintheliterature[3]–[6].For,everycode(2)canbelengthenedtoaperfectcodeandthiscanbedoneinauniquewayuptoequivalence[3].Consequently,codeswithsuchpa-rametersareinadirectrelationshiptotheperfectcodes,soourmaininterestisinthecodeswithand.
Oneaimofthecurrentworkistostudypropertiesofcodeswiththeparametersofdoubly-shortenedandtriply-shortenedperfectbinaryone-error-correctingcodes.ThisstudyisstartedinSectionIIbyconsideringcertainpropertiesofsubcodes,whichcanbeutilizedinacomputer-aidedclassi cationofoptimalbinaryone-error-correctingcodesoflength12and13,consideredinSectionIII.Itturnsoutthatthenumberofequivalenceclassesofandcodesis237610and117823,respectively.Somecentralpropertiesoftheclassi edcodesareanalyzedinSectionIV.Finally,in nitefamiliesofoptimalone-error-correctingcodesoflengthandthatcannotbelengthenedtoperfectone-error-cor-rectingcodesoflengtharepresentedinSectionV.Apreliminaryversionofsomeoftheresultsinthisworkcanbefoundin[6].
Asonlybinarycodesareconsideredinthecurrentwork,thewordbinaryisomittedinthesequel.
II.PROPERTIESOFSUBCODES
Somepropertiesrelatedtosubcodesofthecodesunderstudyareconvenientlyinvestigatedintheframeworkoforthogonalarrays.Anorthogonalarrayofindex,strength,degree,andorderisaarraywithentriesfrom
andthepropertythateverycolumnvector
appearsexactlytimesineverysubarray;necessarily
.Thedistancedistributionofancodeisde nedby
WewillneedthefollowingtheorembyDelsarte[7];formoreinformationabouttheMacWilliamstransform,seealso[1,Ch.5].
Theorem1:AnarrayisanorthogonalarrayofstrengthifandonlyiftheMacWilliamstransformofthedistancedistribu-tionofthecodeformedbythecolumnsofthearrayhasentries
,.
Wearenowreadytoproveacentralresult,essentiallyfol-lowingtheargumentsof[2,Th.6.1](where,however,thecase
ratherthanisconsidered).Theorem2:Every
codeisaneven-distancecodeandformsan
with,
,and
.
Proof:We rstshowthataneven-distance
codeformsanorthogonalarraywith
thegivenparameters.Letbethedistancedistributionof,andletbetheMacWilliamstransformof,thatis
(3)
where
isaKrawtchoukpolynomial.Itiswellknownthatand
for[7].
Asisaneven-distancecode,forodd,and,since
,wehave
(4)
Let
.Direct
calculationsnowshowthat
(5)
From(5)and
wederive
(6)
andforanyotherinteger.Wehave,
,and,sincehasminimumdistance4,.Utilizing(4),
wethenget
(7)
andthereby
Weknowthatinfact,sowehaveequal-itiesin(7).Thisimpliesthat,
thatis,for.By(6)andthecommentthereafter,itfollowsthatfor(and
).ApplicationofTheorem1showsthat
wehaveanorthogonalarraywiththegivenparameters.Toshowthatanycodeisindeedaneven-distancecode,weassumethatthereisacodewhichisnot,tolaterarriveatacontradiction.Thecodecanbeparti-tionedintosetsofeven-weightandodd-weightcodewords,de-notedbyand,respectively.Thatis,
KROTOVetal.:ONOPTIMALBINARYONE-ERROR-CORRECTINGCODESOFLENGTHSAND6773
,withand
.Foranycodewords,,,wehave
(asthedistanceis
oddandgreaterthan4).Let
whereistheweight-onevectorwiththe1incoordinate.We
nowknowthatisaneven-distancecodeforany.Wenextprovethatisanorthogonalarraywiththesamestrength(seetheearlypartoftheproof)asthedifferenteven-distancecodes.Theproofthatthesameholdsforisanalogous.W.l.o.g.,itsuf cestoconsiderthelastcoordinatesandtwo-tuplesthatdifferonlyinone(wechoosethelast)coordinate—inductionthenshowsthatthisholdsforanypairs—andshowthatthesetwo-tuplesoccurinequallymanycodewordsof.
Wedenotethesetofwordsinacodethathavevalueinthelastcoordinatesby.Then
Sinceand
bothformorthogonalarrayswith
strength
,,anditfollowsthat
.
Asisaneven-distancecodethatformsanorthogonalarraywithstrength,http://wendang.chazidian.comly,wenowhaveexceptforand,andcancarryoutcalculationscloselyre-latedto(7):
so
Butsimilarlyonegets
,andthereby
when
,acontradiction.
Corollary1:Acodehasauniquedis-tancedistribution.
Proof:Itsuf cestoprovethattheMacWilliamstransformofthedistancedistributionisunique.BytheproofofTheorem2,foracodewehaveforeveryexceptforandtheunknownvalues
and.Equation(3)givesapairofequationswhichdeterminestheunknownvalues.Consequently,theremarkattheendof[2]aboutthedistancedistributionofcertaincodesnotbeinguniqueappliesonlytotriply-shortenedperfectcodesandnottotriply-shortenedex-tendedperfectcodes.
Corollary2:Everycodewith
isaneven-distancecode.
Proof:Fromacodewiththegivenparametersthatisnotaneven-distancecode,onecangetasubcodeforwhichthesameholds.Thiscanbedonebyshorteninginacoordinatewheretwocodewordsthatareatoddmutualdistancehavethesamevalue.ThisisnotpossiblebyTheorem2.
Thedistance-graphofacodeisagraphwithonevertexforeachcodewordandedgesbetweenverticeswhosecorre-spondingcodewordsareatmutualdistance.
Corollary3:Every
codewithhasaconnecteddistance-3graph.Proof:Ifthedistance-3graphofancodeisnotconnected,thentherearemorethanonewayofextendingthecodetoancode;cf.[8,p.230].Inparticular,itcanthenbeextendedtoacodethatisnotaneven-distancecode.ThisisnotpossiblebyCorollary2.
Corollary4:Shorteningacodetimeswithgivesacodethatisaneven-distancecode.Inparticular,withand,wealwaysgeta
subcodeaftershorteningacodefour
times.
However,notallcodeswith
aresubcodesofsome
code.WeshallnowstrengthenthenecessaryconditioninCorol-lary4foracodetobeasubcodeofa
code.Sincetheresultisofinterestspeci callyfortheclassi -cationinSectionIII,forclarityitispresentedonlyforsubcodesofcodes.Forthegeneralcase,similarconditionscanalternativelybeobtainedusingresultsbyVasil’eva[9]andconnectionsbetweencodesand1-perfectcodesoflength[10,Cor.4].Theorem3:Letbeobtainedfromacodebyshorteningtimes,,andletdenotethenumberofcodewordsofweightin.Ifisanevencode,then
,andifisacodewithonlyodd-weight
codewords,then.
Proof:Withoutlossofgenerality,weassumethatshort-eningiscarriedoutbyextractingcodewordswithzerosingivencoordinates(afterwhichthecoordinatesaredeleted).We rstconsiderthecasegivenanevencode.Considerallsubcodesobtainedbylookingatalldif-ferentsetsoffourandshorteningwithrespecttozerosinthesecoordinates.ByCorollary4,everysuchsubcodehascardinality16,sothesumoftheircardinalitiesis
.Inthissum,everycodeword(intheofweight0isconsidered;similarlyforeach
6774IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.57,NO.10,OCTOBER2011
codewordofweight2,4,6,and8,wegetthecounts330,126,35,and5,respectively.
Afterrepeatingthesecalculationswithrespecttoshorteningsin3,2,1,and0coordinates,wearriveatthefollowingsystemofequations:
Whentheseequationsarecombinedwiththecoef cients,
,,,,andwiththecoef -cients,,,,,one
getstheequationsand
,respectively.Sinceand,weget
and.Fromthelatterin-equality,wegetforodd-weightcodesafter
addingtheall-onewordtoallcodewords.Thiscompletestheprooffor.Theinequalitymeansthatwehaveeither
or(orboth).Intheformercase,wewillhave
onecodewordofweight0afteranyshortening.Inthelattercase,ontheotherhand,thecodewordsofweight2musthavedisjointsupports,soatmostofthemarelostwhenshorteningtimes.Itfollowsthataftershorteningtimes.Thisprovesthe rstpartofthetheorem.
Forthesecondpartofthetheorem,weuseinductionandletbeacodeobtainedbyshorteninganevencodetimes.Moreover,let,soandareobtainedaftershorteningthecodetimes;isobviouslyevenandhasonlyodd-weightcodewords.Wealsode nethecode(whichisobviouslyequivalentto).Theweightdistributionsofthecodes,,,andaredenotedby,,,and,respectively,so
and.From
and
wenowobtain
Thiscompletestheproof.
ItcouldbepossibletosharpenTheorem3,but,asweshalllatersee,itful llsourneedsinthecurrentstudy.
III.CLASSIFICATIONOFONE-ERROR-CORRECTINGCODESBeforedescribingtheclassi cationapproachusedinthecur-rentwork,wegiveashortreviewofsomeoldrelatedclassi -cationresults.
A.SurveyofOldResults
Asurveyofclassi cationresultsforoptimalerror-correctingcodescanbefoundin[8,Sec.7.1.4],wherecataloguesofop-timalcodescanalsobeobtainedinelectronicform.Inthecurrentstudy,weconsideroptimalcodeswith—thatis,optimalone-error-correctingcodes—and.Zaremba[11]provedthatthecodeattainingisunique(uptoequivalence)andsoisthereforeitsextension;itisnotdif culttoshowthatalloptimalcodeswithshorterlengthsarealsounique.BaichevaandKolev[12]provedthatthereare5equivalenceclassesofcodesattaining,andthesehave3extensions.LitsynandVardy[13]proveduniquenessofthecodeattaining
anditsextension.ThesecondauthorofthispapertogetherwithBaichevaandKolevclassi edthecodesattainingand;thereare562equivalenceclasses(with96extensions)and7398equivalencesclasses(with1041exten-sions)ofsuchcodes,respectively.
Knowingthesizesoftheoptimalone-error-correctingcodesuptolength11,oneinfactknowsthesizesofsuchcodesuptolength15by(2).
Theperfectcodesattainingwereclassi- edbythesecondandthethirdauthor[14];thenumberofequivalenceclassesofsuchcodesis5983,http://wendang.chazidian.comingaresultbyBlackmore[3],thisclassi cationcanbeusedtogetthenumberofequivalenceclassesofcodesattaining
,whichis38408;thesehave5983extensions.
Alltheseresultsstillleavetheclassi cationproblemopenforlengths12and13.Itisknown[5]thatnotallsuchcodescanbeobtainedbyshorteningcodesoflength14or15.B.Classi cationApproach
Thegeneralideaunderlyingthecurrentworkistoclas-sifycodesinaniterativemannerbyutilizingthefactthatan
codehasansubcodewith.
Thisidea—withvariousvariations—hasbeenusedearlierin[15]andelsewhere.However,itiseasytoarguewhyitisnotfeasibletoclassifytheandcodesdirectlyinsuchamanner.Aclassi cationoftheandcodesviaaclassi cationofthecodeswithwouldleadtoaprohibitivenumberofcodesoflength11.Toseethis,itsuf cestoobtainaroughboundonthenumberofequivalenceclassesofcodes.Everyoptimalcodehasdifferentsubsetsof128codewords,andanysuchsetofcanbeequivalenttoatmostsetsintotal.There-fore,thereareatleast
equivalenceclassesofcodes.Similar(rough)boundscanbeobtainedforthenumberofcodeswith.
KROTOVetal.:ONOPTIMALBINARYONE-ERROR-CORRECTINGCODESOFLENGTHSAND6775
Sofarinthissection,wehaveconsideredthecase.Ofcourse,by(1),wemightaswellconsiderthecase.Infact,weshalldosointhesequel,togetasmallernumberofequivalenceclassesofsubcodesineachstage.
Tomaketheclassi cationfeasible,weshallmakeuseofCorollary4,whichshowsthatnotonlydoallsub-codesoftheandcodeshave,butwehavethemuchstrongerresultthatallsubcodesoftheandcodeshavesizeandareeven-distancecodes.Moreover,thenumberofsubcodestobeconsideredcanbereducedconsiderablybyTheorem3.Allinall,byCorollary4theandcodescanbeobtainedasfollows:
(8)
Theeven-distance
codesareclassi editerativelyfromsmallercodes,withoutanyassumptionsonthesizesofsub-codes.
Asdescribedin[8,Sec.7.1.1],lengtheningiscarriedoutbyusingacliquealgorithm.Foreachsetofparametersinthese-quence(8),thenumberofcodesisfurtherreducedbyisomorphrejectionandbydiscardingcodesthatdonotful llCorollary4andTheorem3.Detailsregardingtheimplementationofsomeofthesepartswillbediscussednext.C.ImplementationandResults
Beforepresentingtheresultsofthecomputations,weshallconsidersomedetailsregardingtheimplementationofvariouspartsofthealgorithm.
Themethodoflengtheningcodesby ndingcliquesinacertaincompatibilitygraph—consistingofonevertexforeach(even)wordthatcanbeaddedandwithedgesbetweenverticeswhosecorrespondingwordsareatmutualdistanceatleast—iswellknown,cf.[8,Sec.7.1.1].However,weareherefacingthechallengeof ndingratherlargecliques—uptosize256,inthelaststepof(8).Thiscliquesearchcanbespedupasfollowsinthelastthreestepsof(8),againrelyingonthetheoreticalresults.
Considerthestepoflengtheningancodewith
,byincludingacoordinatewithzerosforthese
codewordsandaddingcodewordsoflengthwith1sinthenew(say, rst)coordinate.Thecandidatesforthenewcode-wordscanbepartitionedintosetsdependingonthevaluesinthe rstcoordinates(recallthatthevalueinthe rstcoordinateis1forallofthese).Letbethesubgraphoftheoriginalcompatibilitygraphinducedbytheverticescorre-spondingtothecodewordsin.Wenowconstructanewgraphwithonevertexforallcliquesofsize32inforany,andwithedgesbetweenverticeswheneverthecorrespondingcodespairwiseful lltheminimumdistancecriterion.Thecliquesofsizeingivethedesiredcodes.TheprogramCliquer[16]wasusedinthisworktosolvecliqueinstances.
Isomorphrejection,thatis,detectingandremovingcopiesofequivalentcodes,iscarriedoutviaatransformationintoagraph[15]andusingthegraphisomorphism
内容需要下载文档才能查看programnauty[17].Thegraphconsideredhastwoverticesforeachcoordinate,onefor
TABLEI
NUMBEROFINTERMEDIATE(EVEN-DISTANCE)CODES
eachvalueofthecoordinate.Theprogramnautycanbeaskedtogiveacanonicallabelingofthevertices;weusetheideaofcanonicalaugmentation[18]andrequirethatthevertexcorre-spondingtothenewcoordinateandthevaluegiventotheoldcodewordshavethesmallestlabel.(See[19]forananalogousapproachforconstantweightcodes.)Codesthatpassthistestmuststillbecomparedwiththeothercodesobtainedfromthesamesubcode.
Forthe rstfewsetsofparametersin(8),nautyprocessesthegraphsinasuf cientlyfastmanner.However,thelargerthecodes,thegreateristheneedforenhancingsuchadi-rectapproach,cf.[14].Inthecurrentwork,aninvariantwasusedthatisbasedonsetsoffourcodewordswiththesamevalueinallbutsixcoordinates,wheretheyformthestructure{000000,111100,110011,001111}[14],[20].
Thesearchstartsfromthe343566equivalenceclassesofeven-distancecodes,whichinturnwereclassi edit-erativelyfromsmallercodes.InTableI,thenumberofequiva-lenceclassesofcodesaftereachlengtheningandapplicationofthenecessaryconditionsisshown.
TableIshowsthatthereare27375equivalenceclassesof
codesaswellas17513equivalenceclassesofcodes.Puncturingthecodesinallpossibleways
andcarryingoutfurtherisomorphrejectionrevealsthatthereare237610equivalenceclassesofcodesand117823equivalenceclassesofcodes.AtotaloflessthanonemonthofCPU-timeusingonecoreofa2.8-GHzpersonalcomputerwasneededforthewholesearch.
Beforepresentingthemainpropertiesoftheclassi edcodes,weshallbrie ydiscussvalidationofthesecomputer-aidedresults.
D.ValidationofClassi cation
Datafromtheclassi cationstepscanbeusedtovalidatetheresultsbyusingadouble-countingargument.Morespeci cally,thetotalnumberofeven-distancecodes(thatis,labeledcodesdisregardingequivalence)withcanbecountedintwoways.Thisisawell-knowntechnique,see[8,Ch.10]and[19].
Theorbit-stabilizertheoremgivesthenumberoflabeledeven-distancecodesas
(9)
whereisasetwithonecodefromeachequivalenceclassofsuchcodes.
Letbeasetofrepresentativesfromallequivalenceclassesofeven-distancecodesandthenumberof nalcodes(beforeisomorphrejection)thatareobtainedin
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 福建省2015年农村信用社招聘公共基础知识题库:管理常识(2)试题答案
- 第7章_电磁兼容课件-瞬态Word
- 食物中的营养教学设计
- 2017美国乔治梅森大学留学怎么样
- 化学教学论 (1)
- 2017美国乔治梅森大学入学和申请日期简介
- 医疗质量管理办法
- 2017美国乔治梅森大学申请材料一览
- 2017美国乔治梅森大学介绍
- 校车隐患排查及保养制度
- 我的伤感谁又懂
- 2017美国乔治梅森大学学校声誉解读
- 法制教育安全主题活动课件Word
- 2017美国乔治梅森大学周边环境
- ISMS-3009邮件管理规定
- 甘肃省注会《审计》:注册会计师模拟试题答案
- 六级单词
- 2017美国桥港大学申请条件
- 4.2人类认识地球及其运动的历史Word
- 2017美国乔治梅森大学的入学要求高吗
- 英语四线三格
- 任洁-实习律师培训课件Word
- 雅思成绩复议流程详细介绍
- The reflection of the big bang theory
- 2017美国乔治梅森大学院系专业
- 2017美国乔治梅森大学优势
- ISMS-3015信息系统补丁管理制度
- 授课计划表(摄影基础)
- 班队会制度
- 2017美国乔治华盛顿大学医学和卫生科学学院
网友关注视频
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 苏科版数学七年级下册7.2《探索平行线的性质》
- 人教版二年级下册数学
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 冀教版英语五年级下册第二课课程解读
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 七年级下册外研版英语M8U2reading
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
- 3月2日小学二年级数学下册(数一数)
- 苏教版二年级下册数学《认识东、南、西、北》
- 冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 北师大版数学四年级下册第三单元第四节街心广场
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 七年级英语下册 上海牛津版 Unit5
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理