Advanced Energy ystem of Ammonium Sulfate Solution with Self-heat Recuperation Technology ☆(余勇)
上传者:刘文刚|上传时间:2015-04-22|密次下载
Advanced Energy ystem of Ammonium Sulfate Solution with Self-heat Recuperation Technology ☆(余勇)
Available online at http://wendang.chazidian.com
ScienceDirect
Energy Procedia 61 ( 2014 )131 – 136
The 6th International Conference on Applied Energy – ICAE2014
Advanced energy saving in the evaporation system of ammonium sulfate solution with self-heat recuperation
technology
Dong Hana,b,*, Tao Pengc, Weifeng Hea, Chen Yuea, Wenhao Pua, Lin Lianga
a Jiangsu Province Key Laboratory of Aerospace Power Systems, Nanjing University of Aeronautics and Astronautics, Nanjing
210016, China
b Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong Special Administrative Region, China
c Jiangsu Leke Thermal Technology Equipment Co.,Ltd., Jingjiang, 214500, China
Abstract
A concept of a novel double-stage mechanical vapor recompression (MVR) evaporation system based on the principles of self-heat recuperation technology for ammonium sulfate solution processing is proposed. In the paper, the single-stage and double-stage MVR evaporation systems for ammonium sulfate solution are designed and analyzed. A parametric study is performed to investigate the effects from the emission concentration of the first stage, the evaporation temperature and the temperature difference (TD) between the condensing steam and the boiling solution on the power consumption and heat transfer. During the investigation, the initial ammonium sulfate solution with a concentration of 3% is concentrated to the saturation solution, which has a concentration of 53%. The results show that despite the satisfaction to the principle of self-heat recuperation technology for the two systems, the boiling point elevation will result in a high energy consumption for the compressor in the single-stage MVR system, while the double-stage MVR evaporation system has an obvious energy saving effect with an improved amplitude of 40%.
内容需要下载文档才能查看 内容需要下载文档才能查看© 2014 The Authors. Published by Elsevier Ltd. (http://wendang.chazidian.com/licenses/by-nc-nd/3.0/).
Selection and/or peer-review under responsibility of ICAE
© 2014 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license Peer-review under responsibility of the Organizing Committee of ICAE2014
Keywords: self-heat recuperation technology, mechanical vapor recompression, energy saving, evaporation, boiling-point elevation.
1.Introduction
Researchers and engineers have developed heat recovery methods for evaporation crystallization process, such as multi-stage flash (MSF), multi-effect evaporator (MEE), thermal vapor compression (TVR) [1, 2], and mechanical vapor recompression (MVR) [3,4] to reduce the energy consumption, of which the efficiency is higher than that of MSF, MEE and thermal vapor compression [3].
Recent developments in self-heat recuperation technology (SHRT) have enabled the recovery of both the sensible and latent heats without any additional heat in a process. To recirculate the self heat in the process, the cooling load is recovered by compressors and exchanged with the heating load. As a result, the heat of the process stream is circulated perfectly without additional heat, and the energy
1876-6102 © 2014 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://wendang.chazidian.com/licenses/by-nc-nd/3.0/).
Peer-review under responsibility of the Organizing Committee of ICAE2014doi: 10.1016/j.egypro.2014.11.923
132 Dong Han et al. / Energy Procedia 61 ( 2014 ) 131 – 136
consumption for the process can be reduced considerably [5]. SHRT shows a great energy saving
potential in distillation, drying, and gas separation processes [6]. However, SHRT has not been applied to the evaporation crystallization system.
This work aims to evaluate the energy saving potential by applying SHRT to evaporation systems of ammonium sulfate solution. Two different evaporation systems are designed, and the relevant energy saving effect is analyzed and compared. Reasons for energy saving in the evaporation systems of ammonium sulfate solution are discussed and factors such as the boiling temperature, minimum temperature difference in the heat exchanger, mass concentration of the solution at the outlet of the first stage are evaluated. Nomenclature
BPE Boiling Point Elevation, °C Q
内容需要下载文档才能查看heat load, kW
内容需要下载文档才能查看w specific work, kW/kg P pressure, PaT temperature, K m flow rate, kg/s X mass concentration, % TD temperature difference, °C Subscripts
b boiling temperature f effluent stream h high i inlet o outlet l low comp compressor
2.Energy saving evaporation system of ammonium sulfate solution
Self-heat recuperation technology facilitates the recirculation of both latent and sensible heat in a process, and reduces the energy requirements using compressors and self heat exchangers based on energy recuperation [5]. The designed single-stage and double-stage MVR system are presented in Fig. 1, respectively. The feed with initial concentration through the HX1 and HX2 absorbs the sensible heat from the condensate water and emission, and then evaporates under the latent heat of the secondary steam in HX3. For the double-stage system, the obtained concentration of the first stage flows into HX4 in the second stage to evaporate, and then the solution is exhausted.
(a) (b)
Fig. 1 Single-stage and Double-stage MVR process with self-heat recuperation technology
3.Process modeling of evaporation system of ammonium sulfate solution
The industrial production is always a steady-state process. As a result, the current investigation focuses on the analysis and comparison of the energy saving performance for the two systems based on the mass and energy balance. The feed into the system is preheated in the heat exchanger, and ninety seven percents of the released heat from the hot material is absorbed by the cold side in the heat
Dong Han et al. / Energy Procedia 61 ( 2014 ) 131 – 136 133
exchanger. The relevant heat is expressed as:
Q=mCp(Th Tl)
(1)
The heated material by the waste heat, which is not boiled, is again heated in the high temperature
heat pump with a COP of 2.0 to the boiling point.
For the compressor, the specific power consumption is given as:
ª§p·(n 1)ºnRTi
1»w=«o¸
ηcomp(n 1)«¨pi¹»©¬¼
(2)
where compis calculated by multiplying thethermal compression efficiency, comp=60%, po and pi the
outlet and inlet pressure of the compressor, respectively.
The saturated temperature of the steam before the compressor:
Ti=tb BPE+273 (3)The value of the BPE is expressed as:
Table 1. BPE of ammonium sulfate solution at 1atm
3691213.323.41
0.220.450.670.912
30.5636.7141.7945.3749.7753.55
34571015
For the double-stage MVR system, the emission concentration from the first stage is variable. As a result, the total power is a function of the emission concentration from the first stage, and the minimum total power can be obtained by the extreme value method. 4.Results and discussion
The index of standard coal, which has a value of 7000kcal/kg, is applied to assess the energy saving performance in the paper, and the energy saving effect of the single and double-stage is compared with the three effect evaporation system by converting the consumed electricity of the compressor in the MVR system and the heat steam of the evaporation system to the standard coal. The thermal efficiency of the boiler in the power plant is fixed at 85%, and the power generation efficiency is 36.6%. The energy efficiency ratio of the three effect evaporation system is 0.42, which implies 0.42kg of heat steam is needed to evaporate 1kg of water.
All of the parameters for calculation are listed in Table 1.
Table 2. Parameters for calculation
Evaporation capacity, kg/hMass concentrationof feed flow, %Temperature of feed flow,°C
Range for mass concentration of final effluentflow, %
Difference betweenthe hot flow outlet and the cold flow inlet, °C
Range for the temperaturedifference in heater, °C
value 1000 3 25 53 10
4 6 8 10 12 14 1
134 Dong Han et al. / Energy Procedia 61 ( 2014 ) 131 – 136
4.1.Analysis of the compressor power consumption for the single-stage MVR system at constant
evaporation capacity
Figure 2 shows the relation between the compressor power for one tonne of evaporation capacity and the temperature difference in the heat exchanger. It is evident the consumed power rises with the increase of the temperature difference and the emission concentration, and the obvious increase heterogeneity appears when the emission concentration rises. Little difference of the consumed power is obtained until the emission concentration of 23%, and then the increase amplitude rises significantly. The increase amplitude of the compressor power is about 85~300% at the evaporation temperature, 60 , emission concentration, 53%, compared to the conditions at low concentration, which is attributed to the BPE.
内容需要下载文档才能查看Power of compressor凚kW凛
Temperature difference in heater凚 凛
Fig. 2 Power of compressor for 1000kg/h vapor with temperature difference in heater
4.2.Power performance of the compressor in the MVR system
内容需要下载文档才能查看standard coal凚kg/
内容需要下载文档才能查看h凛
Emission concentration凚%凛
standard coalkg/hstandard coal凚kg/h凛
standard coal凚kg/h凛
Emission concentration凚%凛
(a) TD=8°C (b) TD=16°C
Fig. 3 Standard coal needed at different temperature difference in the heater for three systems
The consumed standard coal for the single, double-stage MVR and the three effect evaporation system at the heat transfer temperature difference of 8 and 16 are presented in Fig. 3. It is seen that the three effect evaporation system has the highest coal consumption at the concentration range of 3% to 50% for the emission, while the double-stage MVR system has the lowest. For the heat transfer temperature difference of 8 the coal consumption of the single-stage MVR system is only 52% of the three effect system, and the double-stage MVR system has a saving amplitude of 40% compared to the single-stage MVR system. When the heat transfer temperature difference is 16 the coal consumption of the single-stage MVR system is only 70% of the three effect system, and the double-stage MVR system has a saving amplitude of 23% compared to the single-stage MVR system.
The standard coal corresponding to the compressor power of the single-stage MVR system and the minimum coal consumption of the double-stage MVR system at different heat transfer temperature
Dong Han et al. / Energy Procedia 61 ( 2014 ) 131 – 136 135
difference are shown in Fig. 4, and the emission concentration differs from 3% to 50%. It is clear that the
consumed coal for the two systems both rises linearly with the increase of the heat transfer temperature difference. Compared to the single-stage MVR system, the energy saving amplitude of the double-stage MVR system is 55% at the heat transfer temperature difference of 4 while it is 30% at 16 . The waste heat in the two systems is able to preheat the feed to the boiling point, 60 , and the surplus heat rises with the increase of the heat transfer temperature difference. The waste heat of the double-stage MVR system is smaller than that of the single-stage one due to the more significant energy saving effect.
内容需要下载文档才能查看Power of compressor凚kW凛
Temperature difference in heater凚 凛
Fig.4 Standard coal needed by single, double-stage MVR system with the temperature difference in the heater
5.Conclusions
It is found that the energy saving effect of the single and double-stage MVR system, both of which are satisfied with the self-heat recuperation technology with no additional heat, are different in the paper. The energy saving superiority of the double-stage MVR system rises with the increase of the evaporation concentration of the ammonium sulfate solution, and an energy saving amplitude from 30% to 55% will be achieved at the saturated concentration. References
[1] Lefebvre, R. Moletta, Treatment of organic pollution in industrial saline wastewater: a literature review, Water Res.40 (2006): 3671– 3682.
[2] D.F. Zhao, J.L. Xue, S. Li, H. Sun, Q.D. Zhang, Theoretical analyses of thermal and economical aspects of multi-effect distillation desalination dealing with high-salinity wastewater, Desalination 273 (2011): 292–298.
[3] F. N. Alasfour, H. K. Abdulrahim, The effects of stage temperature drop on MVC thermal performance, Desalination 265 (2011): 213-221.
[4] N. Lukic, L. L. Diezel, A. P. Fröba, A. Leipertz, Economical aspects of the improvement of a
mechanical vapour compression desalination plant by dropwise condensation, Desalination 264 (2010): 173-178.
[5] Y. Kansha, N. Tsuru, K. Sato, C. Fushimi, Tsutsumi A. self-heat recuperation technology for energy saving in chemical processes. Ind. Eng. Chem. Res 2009; 48: 7682–92.
[6] Y. Kansha, N. Tsuru, K. Sato, C. Fushimi. A new Design Methodology for Heat Integrated Distillation Column Based on Self-Heat Recuperation. Chem Eng T 2010;21: 43-50. Acknowledgements
The work described in this paper was supported by a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Project of Jiangsu Province
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 修改作文:《学单车》Word
- 2017新概念英语第二册Lesson31最新版Word
- 酱缸里的中国一邓宜平
- 2017年度环境法律法规及其他要求清单
- 2017年一级建造师市政实务历年重点考点总结
- 《晏子使楚》教学设计
- 甘肃省2016年下半年注评《资产评估》:股票价值评估关系考试题答案
- 探知他的心理底线 — 薪酬谈判
- 校园安全保卫组织机构及职责
- 心理与行为三种量表对比
- 如何加强部门之间的沟通与协作
- 议论文开头段作用Word
- 2017美国普林斯顿大学校园环境
- 废弃物处理记录表
- 2017美国强生威尔士大学分校区
- ISO9001-14001-2015内审计划通知
- 企业员工管理培训(新)Word
- 2017美国普罗伊斯学校加州大学圣迭戈分校介绍
- That’s right 和that’s all right 适用场合区分
- 22、牧场之国Word
- ISO14001-2015组织环境内部因素分析表
- 财务部风险识别与评估记录表
- 雅思写作常用的10条万能句型
- 雅思听力高频短语必备20句
- ISO14001-2015组织环境外部因素分析表
- 人教版五年级下册语文期末模拟试卷(三)答案
- 电线电缆环境管理物质标准
- 雅思学员8分感言
- 甘肃省2015年下半年资产评估师《经济法》:国家出资企业考试题答案
- 废弃物分类处理清单
网友关注视频
- 外研版英语七年级下册module1unit3名词性物主代词讲解
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
- 冀教版英语三年级下册第二课
- 苏科版数学七年级下册7.2《探索平行线的性质》
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 外研版英语三起6年级下册(14版)Module3 Unit2
- 8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 冀教版英语四年级下册第二课
- 苏科版数学 八年级下册 第八章第二节 可能性的大小
- 三年级英语单词记忆下册(沪教版)第一二单元复习
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 外研版英语七年级下册module3 unit2第二课时
- 苏科版八年级数学下册7.2《统计图的选用》
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
- 人教版二年级下册数学
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 冀教版小学数学二年级下册第二单元《余数和除数的关系》
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理