教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> > 英语考试> P- and S-wave separated elastic wave equation numerical modeling using 2D staggered-grid

P- and S-wave separated elastic wave equation numerical modeling using 2D staggered-grid

Main Menu

P- and S-wave separated elastic wave equation numerical modeling using 2D staggered-grid

Zhang Jianlei*, Tian Zhenping, Wang Chengxiang; BGP, CNPC

Summary

Traditional numerical modeling method using second-order elastic wave equation can only generate the synthetic seismograms of the Z and X component in isotropic medium, in which the P- and S-wavefields are coupled. To obtain wavefield of the pure P- and S-waves, the general method is wavefield separation processing of the coupled wavefield of each component, but it is difficult to get completely separated seismograms. If we use P- and S-wave equation respectively to generate P- and S-wave, the converted P- and S-wave will not appear in wavefield, thus it is not equal to full wavefield modeling. Carrying out full separation of wavefield modeling of pure P- and S-wave (In reconstructed wavefield, X and Z component comprise P- and S-wave that is fully separated.) makes no need of wavefield separation in following multi-wave processing, what’s more, it is of great practical importance for us to study seismic wave propagation mechanism and structure of geology as well as oil reservoir characterization.

Based on P- and S-wave separation of second-order elastic wave equation and first-order staggered-grid method, a P- and S-wave separated modeling equation in first-order staggered-grid is presented. In this method, P- and S-wave are fully separated instead of coupled together to produce synthetic seismograms of pure P- and S-wave. The feasibility and accuracy are shown by a couple of examples of numerical modeling.

Introduction

Ma Detang (2003) presented an elastic wave modeling method using second-order elastic wave equations to separate P- and S-waves. This leads to a new direction for elastic wave modeling study and inversion method. But this method doesn’t adapt to widely extend used because of its low efficient modeling and serious numerical dispersion. Then, we are facing on a problem how to use highly efficient new arithmetic to realize the thinking.

At present, the most prevailing and appropriate modeling method is using velocity-stress elastic wave equation. This is solved using staggered-grid (half–grid in wave field numerical modeling). The advantage is that it doesn’t need the derivatives to the elastic constant media (the known velocity and density). Thus, numerical modeling using velocity-stress elastic wave equation is more efficient and accurate than that of traditional second-order elastic wave equation. Virieux (1984) proposed finite-difference staggered-grid technique to the velocity-

stress elastic wave equation (Virieux, 1986). Its finite-difference accuracy is onlyO( t2+ x2). Levander (1988) presented the staggered-grid with higher order finite-difference schemes, the accuracy isO( t2+ x4). One of the advantage of staggered-grid method is that, with little increasing of the computation and memory space, the local accuracy improved four times and the performance is better (Igel, 1992) than that of conventional grid. To get high accuracy and resolution for seismic wave modeling of the complex structure and media, finite-difference accuracy and grid dispersion have to be improved.

The paper solves the second-order P- and S-wave separated elastic wave equation with higher order staggered-grid finite-difference method. Synthetic modeling result show the validity and effectiveness of our methods.

Basic Principle

Traditional 3D second-order elastic wave equations can be represented as:

2u2

2 u t2=Vp + 2v+ 2w x2

x y x z + V2 2u 2u 2v 2

w s y+ z x y x z

2v222

(1)

t=V2 up + v+ w x y y y z +

2v222

V2 + v u w

s

x2

z2 x y y z 2w2 2v 2=V2 u+w +

t2p x z y z+ z2 2 2w 2u 2 V2 wv

s + x2

y2 x z y z By introducing new variables:

Sp={up,vp,wp} (2) Ss={us,vs,ws}

where Sp is non-rotational P-wave field, and Ss is non-dispersed pure S-wave field, equation (1) will become (Ma Detang, 2003):

Main Menu

P- and S-wave separate Elastic wave equation numerical modeling using 2D staggered-grid

u=up+usv=vp+vsw=wp+ws 2up t=V2 2u 2v 2w p x+ x y+ x z

2vp2

2u 2 t2Vp

x y+v 2=w

y2

+ y z

2wp

2

t2=V2 u 2v 2w p (3)

x z+ y z

+ z2

2u2

2s u 2v 2w t2=V2 u s y2+ z2 x y x z 2v22s v 2u 2w t=V2 vs

x

+ z x y y z 2w2

s 2w 2u 2v t2=V2 ws x2+ y2 x z y z

For 2D case, equation (3) will be simplified to the

following equations:

u

=up+us w=wp+ws 2up2 2

u 2w

t=Vp x+ x z 2

2

wp=V2 u 2w t

p x z+ z 2u22

s(4)

t2=V2 us 2

w

z x z 2

w2s=V2 w

2

u

t2s x2 x z

Here,

up+wp

is non-rotational pure P-wave field,

wp+ws is non-dispersed pure S-wave field.

Unlike traditional regular grid, Madariaga (1976)

presented a more advanced staggered-grid finite-difference method which was used by Virieux to modeling SH and P-SV wave in isotropy medium. The accuracy of the traditional finite-difference schemes isO( t2+ x2). Without little loss of computation speed and memory space, the staggered-grid improved the local accuracy to be the fourth order at O( t2+ x4) (Levander, 1988). This makes the performance much better than that of conventional grid. Equation (5) shows 2D isotropic elastic equation, where B is the reciprocal of density.

In order to apply staggered-grid technique, we let

vx t=B τxx

x

+ τxz z

vz τzz t=B τxz

x

+ z (5) τxx vx v t=(λ+2µ) x

z

z τzz

t

=(λ+2µ)

vz z+λ vx x τxz t=µ vx

z+ vz x

where vx and vz are the velocity variables of particles in X- and Z-directions, respectively; τxxandτzz are normal stress;

τxz

is tangential stress;

λ

and

µ

Lames´

coefficient.

vx=vxp+vxs

vz=vzp+vzs

v=V2xpp t2λ+2µ( τxx x+ τ

zz x

vzp=V2

p( τxx τ

t2λ+2µ z+zz z) vxs2 1 τxz

1 τzz τxx t=Vs µ z 2λµ+2µ2 (λ+2µ) x λ

x

vzs=V2 1 τxz t

s µ x 1

2λµ+2µ (λ+2µ) τxx z λ τzz z (6)

τ xx=(λ+2µ) vx+ v τt xλz

zz vzx

=(λ+2µ) vz+λ

t τ z xxz vx

t=µ z+ vz

x

Here,

Vp is the P-wave velocity and Vs is S-wave

velocity. Equation (6) can be solved to get synthetic seismogram of pure P- and S-waves:vp=vxp+vzp

and

vs=vxs+vzs

. These pure seismograms contain

converted waves which will be absent from pure P- and S-wave equation modeling (without converted wave

component). This means that no further separations of P- and S-waves are needed.

Numerical modeling

To demonstrate the correctness of this method, we first test an example of horizontal layer model. The P- and S-

wave velocity model of the horizontal medium is shown in Figure 1. P-wave velocities are 2500m/s, 3000m/s and 4000m/s; S-wave velocities are 1732m/s, 2809m/s and 3309m/s; the densities are 2.0g

/cm3, 3.0g/cm3 and

3.5g/cm3. We use pure P-wave explosive source, which is located at the center of the model in horizontal direction and at the depth of 300m below the surface.

Distance(km)

Depth(k

Figure 1 P-wave velocity field

of a horizontal model. Figure 2 shows the snapshots of each component of the wavefield at the time 700 ms. Figures 2a and 2b are the P- and S-wave field of the Z component, respectively. Correspondingly, Figures 2c and 2d show the P- and S-wave field of the X component. P- and S-wave can be found in the first two snapshots and other waves such as reflection wave, transmitted wave, converted wave, refraction P-wave and refraction S-wave are also displayed in the figures.

Distance (km)

(a)

Depth (km)

Transmitted P-wave

(b)

Depth (km)

(c)

Depth (km)

(d)Depth (km)

Figure 2. Snapshotof each component of the wavefield at the time 700ms, (a) and (b) shows the P- and S-wave field of Z component; (c) and (d)

shows the P- and S-wave field of X component.

The synthetic seismogram is shown in Figure 3, where Figures 3a and 3b are P- and S-wave synthetic seismograms of the Z component, respectively. Figures 3c and 3d are P- and S-wave synthetic seismograms of the X component, respectively.

Trace number Trace number

(a) (b)

Time (s)

(c)

(d)

Time (s)

(e) (f)

间(s)

Figure 3. Modeling seismogram, (a) and (b) is P-andS-wave of Z component, (c) and (d) is P- and S-wave of X component, (e) and (f) is Z and X component seismogram that is got by applied elastic wave

equation modeling.

Figures 3e and 3f are the synthetic seismograms for the Z and X component from elastic wave equation modeling. These results just confirm that our 2D P- and S-wave separated elastic wave equation can model both pure P- and S-wave seismograms just like wavefield snapshot shown.

内容需要下载文档才能查看

Distance (m)

Depth (m)

Figure 4 The P-wave velocity of complex model

Trace number Trace number(a)

(b)

Time (s)

(c)

(d)

Time (s)

(e)

(f)

Time (s)

Figure 5. The complex model synthetic seismogram, (a) and (b) are P- and S-wave synthetic seismogram of Z component; (c) and (d) are P- and S-wavesynthetic seismogram of X component; (e) and (f) are Z and X

synthetic seismograms from elastic wave equationmodeling.

To further test our modeling method, we design a relatively complex model. Figure 4 is the P-wave velocity for this complex model. The explosive source, which mainly generates a pure P-wave, is located 13000m away from the left boundary at a depth of 300m below the surface. The trace interval is 10m and maximum offset is 5000m. Modeling seismogram is shown in Figure 5, where Figures 5a and 5b are P- and S-wave modeling seismograms of the Z component, Figures 5c and 5d are P- and S-wave modeling seismograms of the X component, Figures 5e and 4f are the Z and X component seismograms from elastic wave equation modeling. This relatively complex model demonstrates that our modeling method works well.

Conclusion

The paper presents 2D P- and S-wave separate staggered-grid finite-difference elastic wave numerical modeling method; this method can generate separated P- and S-wave using elastic wave numerical modeling of complex 2D model. The P- and S-waves are naturally separated in the numerical modeling instead of the separation of wavefield afterwards. It may help understand elastic wave modeling and inversion.

Acknowledgement

The authors would like to thank the BGP of CNPC for encouraging this work and for permission to present this paper.

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

2015特岗招考“统一多民族国家的巩固和社会的危机”单元测试题(1)
特岗教师招考地理核心考点:自然环境的整体性和差异性(一)
2015特岗教师招考:英语专题复习——连词(二)
特岗教师招考音乐——基本乐理基础知识(八)
2015特岗教师招考|地理学科:自然环境的整体性和差异性典例精析(一)
2015特岗教师招考|英语“连词”专项练习(5)
2015特岗教师招考“自然环境的整体性和差异性”精选试题(4)
2015特岗教师招考“细胞的基本结构”专项练习(1)
特岗教师招聘体育《运动训练学》备考:运动员状态诊断与训练目标建立
2015特岗教师招考|英语“连词”专项练习(1)
2015特岗教师招考“细胞的基本结构”专项练习(3)
特岗教师招考音乐——基本乐理基础知识(七)
特岗招考语文备考:常见文言实词详解(二十一)
特岗教师招考物理备考资料:热和能(二)
2015特岗教师招聘考试《政治学原理》高频考点(十九)
特岗教师招考物理备考资料:热和能(一)
2015特岗教师招考|地理学科:自然环境的整体性和差异性典例精析(二)
2015特岗教师招考|英语“连词”专项练习(3)
特岗教师招聘体育《运动训练学》备考:运动成绩及其决定因素
2015特岗教师招考“细胞的基本结构”专项练习(2)
特岗招考历史备考:“统一多民族国家的巩固和社会的危机”考点梳理(三)
2015特岗教师招考“自然环境的整体性和差异性”精选试题(1)
2015特岗教师招考“化学方程式”综合测试题(1)
2015特岗教师招考|英语“连词”专项练习(2)
2015特岗教师招聘考试《政治学原理》高频考点(十八)
特岗教师招考“利用化学方程式的简单计算”考点透视及典例精析
2015特岗教师招考:英语专题复习——连词(一)
2015特岗教师招聘考试《政治学原理》高频考点(二十)
2015特岗教师招考|英语“连词”专项练习(4)
特岗教师招考音乐——基本乐理基础知识(九)

网友关注视频

外研版英语七年级下册module3 unit2第二课时
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
二年级下册数学第一课
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
外研版英语三起5年级下册(14版)Module3 Unit2
第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
小学英语单词
七年级英语下册 上海牛津版 Unit3
外研版英语三起5年级下册(14版)Module3 Unit1
外研版英语七年级下册module1unit3名词性物主代词讲解
第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
冀教版小学数学二年级下册第二单元《余数和除数的关系》
8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
冀教版小学数学二年级下册1
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
冀教版英语四年级下册第二课
苏科版数学八年级下册9.2《中心对称和中心对称图形》
沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
苏教版二年级下册数学《认识东、南、西、北》
沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
北师大版数学四年级下册第三单元第四节街心广场
沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
《空中课堂》二年级下册 数学第一单元第1课时
苏科版数学七年级下册7.2《探索平行线的性质》
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
冀教版小学数学二年级下册第二单元《租船问题》