Details of destruction, one molecule at a time
上传者:曹敏年|上传时间:2015-04-29|密次下载
Details of destruction, one molecule at a time
单细胞计数
homeostasis and cell physiology.
Precisely how SRP and NAC interact at the
ribosome remains unclear. Gamerdinger et
al. propose that SRP and NAC compete for
overlapping binding sites on the ribosomal
protein uL23 ( 4), and that NAC binds trans-
lating ribosomes, unless an emerging signal
sequence provides a selective binding ad-
vantage to SRP. Other in vitro data suggest
that there is an alternative NAC ribosome
binding site near eL31 ( 5, 12), and that both
NAC and SRP concomitantly bind the ribo-
some ( 12). SRP could quickly scan translat-
ing ribosomes irrespective of NAC presence,
until an emerging signal sequence triggers
strong SRP binding and NAC release. How
other ribosome-bound chaperones and en-
zymes involved in the folding and process-
ing of nascent chains affect the selection of
NAC versus SRP also remains unclear. NAC
apparently directly influences cotranslational
import of proteins into mitochondria in yeast
( 14), possibly explaining induction of the mi-
tochondrial stress response upon NAC deple-
tion seen in the C. elegans study.
The in vivo work by Gamerdinger et al.
establishes and further defines a central
process in protein biogenesis for metazoan
cells, and corroborates much of the earlier in
vitro work done by Wiedmann. Systematic
approaches such as proteome-wide inter-
action profiling of nascent chains are now
needed to elucidate the dynamics and in-
terplay of SRP, NAC, and other ribosome-
associated factors at the ribosome. Finally,
the Deuerling-Wiedmann model (see the
figure) of antagonistic “sort and countersort”
reflects a recurring principle of check and
countercheck common to a number of bio-
logical mechanisms. Such systems provide a
calibrated equilibrium between two oppos-
ing functions that enhances accuracy and ef-
ficiency in decision-making processes within
living cells. ■
REFERENCESBIOCHEMISTRYDetails of destruction, one molecule at a timeProtein ubiquitination and destruction by the proteasome is examined at the single-molecule levelE
1. M. Gamerdinger, M. A. Hanebuth, T. Frickey, E. Deuerling,
Science 348, 201 (2015).
2. B. Wiedmann, H. Sakai, T. A. Davis, M. Wiedmann, Nature
370, 434 (1994).
3. M. del Alamo et al., PLOS Biol. 9, e1001100 (2011).
4. R. D. Wegrzyn et al., J. Boil. Chem. 281, 2847 (2006).
5. M. Pech, T. Spreter, R. Beckmann, B. Beatrix, J. Boil. Chem.
285, 19679 (2010).
6. B. Lauring, G. Kreibich, M. Weidmann, Proc. Natl. Acad. Sci.
U.S.A. 92, 9435 (1995).
7. B. Lauring, H. Sakai, G. Kreibich, M. Wiedmann, Proc. Natl.
Acad. Sci. U.S.A. 92, 5411 (1995).
8. I. Moller et al., Proc. Natl. Acad. Sci. U.S.A. 95, 13425
(1998).
9. A. Neuhof, M. M. Rolls, B. Jungnickel, K. U. Kalies, T. A.
Rapoport, Mol. Biol. Cell 9, 103 (1998).
10. D. Raden, R. Gilmore, Mol. Biol. Cell 9, 117 (1998).
11. I. Möller et al., FEBS Lett. 441, 1 (1998).
12. Y. Zhang et al., Mol. Biol. Cell 23, 3027 (2012).
13. B. Jungnickel, T. A. Rapoport, Cell 82, 261 (1995).
14. C. Lesnik, Y. Cohen, A. Atir-Lande, M. Schuldiner, Y. Arava,
Nat. Commun. 5, 5711 (2014).
10.1126/science.aab1335
SCIENCE http://wendang.chazidian.comdeterminants for substrate engagement by the proteasome, and delineated the mecha-ssential cellular processes, such as nism occurring within the proteasome that cell division, rely on the coordinated couples the initiation of protein degrada-destruction of proteins. The predomi-tion with the removal of ubiquitin from the nant means of accomplishing this in-substrate.volves a large cellular machine, the The APC/C has a difficult task. It needs proteasome ( 1). Proteasomal degrada-to precisely and quickly identify proteins tion ensues when proteins are modified with for disposal for the cell cycle to proceed. ubiquitin, a small protein, that has many For this purpose, the APC/C utilizes short, different roles ( 2). This tagging involves a low-complexity recognition sequences in its carrier protein (an E2 ubiquitin-conjugating substrates, which it binds to with the help enzyme) and a substrate-determining pro-of coactivators ( 3). Because these sequences tein (an E3 ligase). For example, during the are present in roughly one-third of the cell’s cell division cycle, a large multiprotein E3 entire protein repertoire (“proteome”), it is ligase, the anaphase-promoting complex/cy-unclear how the APC/C distinguishes po-closome (APC/C), utilizes two E2 enzymes, tential substrates. Nonetheless, once APC/C UBE2C and UBE2S, to target proteins for selects a substrate, it is ubiquitinated and destruction ( 3). On pages 199 and 200 of degraded within minutes.this issue, two Research Articles by Lu et Lu et al. (4) find that the first encounter of al. focus on these reactions and illuminate, the APC/C with a substrate leads to efficient at the single-molecule level, the process of mono-, di-, and triubiquitin modification on ubiquitination by APC/C ( 4), as well as the multiple sites (lysine residues), driven by recognition and subsequent destruction of APC/C substrates by proteasomes ( 5). Both studies substantially enrich our knowledge of ubiquitination and degradation, reveal new properties of APC/C and the protea-some, and challenge established concepts about the ubiquitin-proteasome system.In one study, Lu et al. ( 4) immobilized fluorescently labeled APC/C substrates on a glass slide and then exposed the slide to APC/C. Interaction between an APC/C and UBE2C. This was observed both with puri-a substrate, and the subsequent attachment fied components, but remarkably also with of fluorescent ubiquitin to the substrate, endogenous APC/C activity from cell lysates. were analyzed using total internal reflec-Intriguingly, the authors found that after ini-tion fluorescence (TIRF) microscopy. In the tial ubiquitination, affinity of the substrate other study, the authors analyzed interac-for the APC/C is increased. This indicates tions between immobilized fluorescently la-that there may be unknown ubiquitin recep-beled proteasomes and a range of substrates tors on the APC/C, and recent insight into containing chains of fluorescent ubiquitin the APC/C from structural biology ( 6) should of defined length and composition. In both facilitate their identification. Moreover, studies, the fluorescently labeled ubiquitin based on the observed interaction with ubiq-allowed reporting on the number of ubiqui-uitinated substrates, the authors propose a tin moieties attached to the substrates. The feedforward-like mechanism called “pro-approach has enabled a kinetic description cessive affinity amplification” (see the fig-of the ubiquitin transfer reaction, revealed ure), which ensures that substrates marked for destruction are kept in a ubiquitinated state, while ubiquitinatable decoy un-sub-Medical Research Council Laboratory of Molecular Biology, strates can be selected against by the APC/C. Francis Crick Avenue, Cambridge CB2 0QH, UK. E-mail: dk@mrc-lmb.cam.ac.ukDespite multiple encounters and higher By David Komander “Both studies … challenge established concepts about the ubiquitin-proteasome system.”10 APRIL 2015 ? VOL 348 ISSUE 6231 183
Published by AAAS
单细胞计数
INSIGHTS | PERSPECTIVES
Efcient degradation
Protein
Multi mono-Ub
Highly
processive
initiation
APC/CProteasome
Multi di-Ub
Processive afnity (best substrate)
amplifcation
Mono-UbDeubiquitination prior
Short chainsto degradation
Single long Ub chain
Optimizing demise. APC/C maintains an ubiquitination level suitable for protein destruction (left). Those tagged with multiple short chains are superior proteasome substrates (right).affinity for APC/C, preubiquitinated sub-the cooperativity presumably originates requirement, in needing enough ubiquitin strates are not efficiently modified beyond from engaging separate receptors for ubiq-to establish sufficient residence times on its the first set of ubiquitins; chain elongation uitin, the subsequent affinity increases are ubiquitin receptors, as well as a qualitative by UBE2S is comparatively inefficient. This likely due to avidity effects.requirement in processing only substrates suggests that reassociation with the APC/C Why then are multi-monoubiquitinated modified with ubiquitin chains, which are may serve to simply “top up” ubiquitination proteins not degraded by the proteasome? essential to initiate degradation. It makes to keep substrates primed for proteasomal Indeed, the single-molecule dwell-times of perfect sense that the APC/C focuses on en-degradation. However, the latter result is multi-mono- and polyubiquitinated proteins suring that the minimal requirements are somewhat inconsistent with findings that at the proteasome are similar. Lu et al. (5) find met for its multiple substrates, as such effi-an APC/C substrate binding event leads that a ubiquitin chain, irrespective of length, ciency is likely important to coordinate the to processive ubiquitin amplification by has to be present to activate proteasomal fundamental processes of cell division.
UBE2S ( 7, 8).degradation. The first step in degradation is The idea that proteasomal degradation The observed APC/C activity is consistent the initiation of translocating a protein into relies on nondiscriminative bulk modifi-with previous mass-spectrometry analysis the degradation chamber. This requires ad-cation of proteins, rather than single long on cyclin B ( 9), a protein involved in push-enosine 5′-triphosphate (ATP). Locking the chains, may rationalize many findings at ing the cell through the mitosis phase of proteasome in an ATP-bound state improved odds with prior models ( 15), and suggests the cell cycle, but raises questions about residence times for substrates modified with that single-chain ubiquitination events whether a such modified protein is a good chains of ubiquitin, suggesting that in this could be repurposed for alternative and state, the proteasome exposes a chain recep-nondegradative processes. ■
other study by Lu et al. (5) compares sub-tor near the entry channel.
strates modified with four monoubiquitins, The proteasome does not degrade ubiq-REFERENCES
two diubiquitins, or one tetraubiquitin mol-uitin, but rather recycles it, and for this, it 1. D. Finley, Annu. Rev. Biochem. 78, 477 (2009).
ecule, showing that the protein modified employs several different deubiquitinases 2. D. Komander, M. Rape, Annu. Rev. Biochem. 81, 203 (2012).
3. I. Primorac, A. Musacchio, J. Cell Biol. 201, 177 (2013).
with two diubiquitins is the superior prote-( 1). The deubiquitinase Rpn11 is located 4. Y. Lu, W. Weiping, M. W. Kirschner, Science 348, 1248737 asome substrate. This overturns a paradigm near the entry channel (11, 14). Closing (2015).
in the ubiquitin-proteasome field stating the circle, Lu et al. (5) study Rpn11–medi- 5. Y. Lu, B.-H. Lee, R. W. King, D. Finley, M. W. Kirschner,
Science 348, 1250834 (2015).
that a proteasome substrate must harbor ated deubiquitination of substrates at the 6. L. Chang et al., Nature 513, 388 (2014).
a tetraubiquitin chain to be degraded ( 10), proteasome, at single-molecule resolution, 7. K. E. Wickliffe et al., Cell 144, 769 (2011).
but is consistent with substantial structural and show that Rpn11 releases the complete 8. H.-J. Meyer, M. Rape, Cell 157, 910 (2014).
9. D. S. Kirkpatrick et al., Nat. Cell Biol. 8, 700 (2006).
data ( 11, 12) that have failed to identify a short chains of ubiquitin in a coordinated 10. J. S. Thrower et al., EMBO J. 19, 94 (2000).
tetraubiquitin receptor on the proteasome. fashion as the substrate is pulled into the 11. G. C. Lander et al., Nature 482, 186 (2012).
Correlating proteasome residence times proteasome. This mode of Rpn11 activation 12. E. Sakata et al., Proc. Natl. Acad. Sci. U.S.A. 109, 1479
(2012).
with the number of ubiquitins on a sub-has been suggested recently ( 13, 14). 13. E. J. Worden et al., Nat. Struct. Mol. Biol. 21, 220 (2014). strate, Lu et al. (5) reveal cooperative bind-The findings of Lu et al. (4, 5) reveal how 14. G. R. Pathare et al., Proc. Natl. Acad. Sci. U.S.A. 111, 2984 ing for the first three ubiquitin molecules, protein degradation can be used as a rapid (2014).
15. K. Flick et al., Nat. Cell Biol. 6, 634 (2004). and linear, stochastic increase in residence and efficient means to regulate cellular pro-
time with additional ubiquitin. Although cesses. The proteasome has a quantitative 10.1126/science.aab0931184 10 APRIL 2015 ? VOL 348 ISSUE http://wendang.chazidian.com SCIENCE
Published by AAASECNEICS/NAINULTOA .V :NOIATRTSULLI
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 感觉神经及运动神经束构建神经化组织工程骨修复兔股骨缺损的实验研究
- 人骨肉瘤组织血管特异性亲和肽的筛选和初步鉴定
- [最新]中医医学医学基础实际1-4
- 骨桥蛋白体外诱导大鼠骨髓基质干细胞向成骨细胞分化中作用
- 医学院校电子资源建设现状与用户需求实证研究
- 按摩疗法在康复医学中的运用举隅
- 2015年北京中医药大学临床医学院(北京中医医院)针灸推拿学专业复试真题以及导师简介
- [精品]中医医学医学基础实际_1449525886
- 与时间赛跑“精确”打击肿瘤细胞——记我国著名肿瘤学放疗专家于金明教授
- [精品]中医学基础实际
- 【精品】环境因子对微生物生长和代谢的影响
- 中华医学会检验分会成立30周年庆典大会暨第八次全国检验医学学术会议纪要
- 医学教学引导未来_关于我国医学影像技术应用的现状及前景_王骏
- 第三章护理相关理论及模式
- 学科门类(二级类)临床医学--护理学[优质文档]
- 大学生创新心理素质教育讲义新
- 医学英语教学中重要因素的现状分析
- [精品]中医医学医学基础实际_1449497551
- 快速康复外科医学——优化的临床门路[资料]
- 针灸医籍选读课程设置再思考
- 医学期刊发表时滞现状及改变措施探讨.doc
- 壳聚糖_羟基磷灰石骨修复材料的研究进展
- 心理咨询入门复习资料(可编辑)
- 临床医学专业临床肿瘤学课程试题资料[精品]
- 07五专《康复》教案
- 试论临床医学检验质量管理要点[权威资料]
- 透骨草化学成分的研究进展
- 医学院校附属医院图书馆的现状与对策
- 傣医传统疗法在康复医学中的应用构想
- [精品]2010年中级主管护师资格测验外科护理学模拟试题及谜底
网友关注视频
- 3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
- 苏科版数学七年级下册7.2《探索平行线的性质》
- 外研版英语七年级下册module3 unit2第二课时
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
- 外研版英语三起6年级下册(14版)Module3 Unit1
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 苏科版数学 八年级下册 第八章第二节 可能性的大小
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
- 二年级下册数学第二课
- 苏科版八年级数学下册7.2《统计图的选用》
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 七年级英语下册 上海牛津版 Unit5
- 冀教版英语五年级下册第二课课程解读
- 外研版英语七年级下册module1unit3名词性物主代词讲解
- 化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 北师大版数学四年级下册第三单元第四节街心广场
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理