教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 高等教育> 生物学> Details of destruction, one molecule at a time

Details of destruction, one molecule at a time

上传者:曹敏年
|
上传时间:2015-04-29
|
次下载

Details of destruction, one molecule at a time

单细胞计数

homeostasis and cell physiology.

Precisely how SRP and NAC interact at the

ribosome remains unclear. Gamerdinger et

al. propose that SRP and NAC compete for

overlapping binding sites on the ribosomal

protein uL23 ( 4), and that NAC binds trans-

lating ribosomes, unless an emerging signal

sequence provides a selective binding ad-

vantage to SRP. Other in vitro data suggest

that there is an alternative NAC ribosome

binding site near eL31 ( 5, 12), and that both

NAC and SRP concomitantly bind the ribo-

some ( 12). SRP could quickly scan translat-

ing ribosomes irrespective of NAC presence,

until an emerging signal sequence triggers

strong SRP binding and NAC release. How

other ribosome-bound chaperones and en-

zymes involved in the folding and process-

ing of nascent chains affect the selection of

NAC versus SRP also remains unclear. NAC

apparently directly influences cotranslational

import of proteins into mitochondria in yeast

( 14), possibly explaining induction of the mi-

tochondrial stress response upon NAC deple-

tion seen in the C. elegans study.

The in vivo work by Gamerdinger et al.

establishes and further defines a central

process in protein biogenesis for metazoan

cells, and corroborates much of the earlier in

vitro work done by Wiedmann. Systematic

approaches such as proteome-wide inter-

action profiling of nascent chains are now

needed to elucidate the dynamics and in-

terplay of SRP, NAC, and other ribosome-

associated factors at the ribosome. Finally,

the Deuerling-Wiedmann model (see the

figure) of antagonistic “sort and countersort”

reflects a recurring principle of check and

countercheck common to a number of bio-

logical mechanisms. Such systems provide a

calibrated equilibrium between two oppos-

ing functions that enhances accuracy and ef-

ficiency in decision-making processes within

living cells. ■

REFERENCESBIOCHEMISTRYDetails of destruction, one molecule at a timeProtein ubiquitination and destruction by the proteasome is examined at the single-molecule levelE

1. M. Gamerdinger, M. A. Hanebuth, T. Frickey, E. Deuerling,

Science 348, 201 (2015).

2. B. Wiedmann, H. Sakai, T. A. Davis, M. Wiedmann, Nature

370, 434 (1994).

3. M. del Alamo et al., PLOS Biol. 9, e1001100 (2011).

4. R. D. Wegrzyn et al., J. Boil. Chem. 281, 2847 (2006).

5. M. Pech, T. Spreter, R. Beckmann, B. Beatrix, J. Boil. Chem.

285, 19679 (2010).

6. B. Lauring, G. Kreibich, M. Weidmann, Proc. Natl. Acad. Sci.

U.S.A. 92, 9435 (1995).

7. B. Lauring, H. Sakai, G. Kreibich, M. Wiedmann, Proc. Natl.

Acad. Sci. U.S.A. 92, 5411 (1995).

8. I. Moller et al., Proc. Natl. Acad. Sci. U.S.A. 95, 13425

(1998).

9. A. Neuhof, M. M. Rolls, B. Jungnickel, K. U. Kalies, T. A.

Rapoport, Mol. Biol. Cell 9, 103 (1998).

10. D. Raden, R. Gilmore, Mol. Biol. Cell 9, 117 (1998).

11. I. Möller et al., FEBS Lett. 441, 1 (1998).

12. Y. Zhang et al., Mol. Biol. Cell 23, 3027 (2012).

13. B. Jungnickel, T. A. Rapoport, Cell 82, 261 (1995).

14. C. Lesnik, Y. Cohen, A. Atir-Lande, M. Schuldiner, Y. Arava,

Nat. Commun. 5, 5711 (2014).

10.1126/science.aab1335

SCIENCE http://wendang.chazidian.comdeterminants for substrate engagement by the proteasome, and delineated the mecha-ssential cellular processes, such as nism occurring within the proteasome that cell division, rely on the coordinated couples the initiation of protein degrada-destruction of proteins. The predomi-tion with the removal of ubiquitin from the nant means of accomplishing this in-substrate.volves a large cellular machine, the The APC/C has a difficult task. It needs proteasome ( 1). Proteasomal degrada-to precisely and quickly identify proteins tion ensues when proteins are modified with for disposal for the cell cycle to proceed. ubiquitin, a small protein, that has many For this purpose, the APC/C utilizes short, different roles ( 2). This tagging involves a low-complexity recognition sequences in its carrier protein (an E2 ubiquitin-conjugating substrates, which it binds to with the help enzyme) and a substrate-determining pro-of coactivators ( 3). Because these sequences tein (an E3 ligase). For example, during the are present in roughly one-third of the cell’s cell division cycle, a large multiprotein E3 entire protein repertoire (“proteome”), it is ligase, the anaphase-promoting complex/cy-unclear how the APC/C distinguishes po-closome (APC/C), utilizes two E2 enzymes, tential substrates. Nonetheless, once APC/C UBE2C and UBE2S, to target proteins for selects a substrate, it is ubiquitinated and destruction ( 3). On pages 199 and 200 of degraded within minutes.this issue, two Research Articles by Lu et Lu et al. (4) find that the first encounter of al. focus on these reactions and illuminate, the APC/C with a substrate leads to efficient at the single-molecule level, the process of mono-, di-, and triubiquitin modification on ubiquitination by APC/C ( 4), as well as the multiple sites (lysine residues), driven by recognition and subsequent destruction of APC/C substrates by proteasomes ( 5). Both studies substantially enrich our knowledge of ubiquitination and degradation, reveal new properties of APC/C and the protea-some, and challenge established concepts about the ubiquitin-proteasome system.In one study, Lu et al. ( 4) immobilized fluorescently labeled APC/C substrates on a glass slide and then exposed the slide to APC/C. Interaction between an APC/C and UBE2C. This was observed both with puri-a substrate, and the subsequent attachment fied components, but remarkably also with of fluorescent ubiquitin to the substrate, endogenous APC/C activity from cell lysates. were analyzed using total internal reflec-Intriguingly, the authors found that after ini-tion fluorescence (TIRF) microscopy. In the tial ubiquitination, affinity of the substrate other study, the authors analyzed interac-for the APC/C is increased. This indicates tions between immobilized fluorescently la-that there may be unknown ubiquitin recep-beled proteasomes and a range of substrates tors on the APC/C, and recent insight into containing chains of fluorescent ubiquitin the APC/C from structural biology ( 6) should of defined length and composition. In both facilitate their identification. Moreover, studies, the fluorescently labeled ubiquitin based on the observed interaction with ubiq-allowed reporting on the number of ubiqui-uitinated substrates, the authors propose a tin moieties attached to the substrates. The feedforward-like mechanism called “pro-approach has enabled a kinetic description cessive affinity amplification” (see the fig-of the ubiquitin transfer reaction, revealed ure), which ensures that substrates marked for destruction are kept in a ubiquitinated state, while ubiquitinatable decoy un-sub-Medical Research Council Laboratory of Molecular Biology, strates can be selected against by the APC/C. Francis Crick Avenue, Cambridge CB2 0QH, UK. E-mail: dk@mrc-lmb.cam.ac.ukDespite multiple encounters and higher By David Komander “Both studies … challenge established concepts about the ubiquitin-proteasome system.”10 APRIL 2015 ? VOL 348 ISSUE 6231 183

Published by AAAS

单细胞计数

INSIGHTS | PERSPECTIVES

Efcient degradation

Protein

Multi mono-Ub

Highly

processive

initiation

APC/CProteasome

Multi di-Ub

Processive afnity (best substrate)

amplifcation

Mono-UbDeubiquitination prior

Short chainsto degradation

Single long Ub chain

Optimizing demise. APC/C maintains an ubiquitination level suitable for protein destruction (left). Those tagged with multiple short chains are superior proteasome substrates (right).affinity for APC/C, preubiquitinated sub-the cooperativity presumably originates requirement, in needing enough ubiquitin strates are not efficiently modified beyond from engaging separate receptors for ubiq-to establish sufficient residence times on its the first set of ubiquitins; chain elongation uitin, the subsequent affinity increases are ubiquitin receptors, as well as a qualitative by UBE2S is comparatively inefficient. This likely due to avidity effects.requirement in processing only substrates suggests that reassociation with the APC/C Why then are multi-monoubiquitinated modified with ubiquitin chains, which are may serve to simply “top up” ubiquitination proteins not degraded by the proteasome? essential to initiate degradation. It makes to keep substrates primed for proteasomal Indeed, the single-molecule dwell-times of perfect sense that the APC/C focuses on en-degradation. However, the latter result is multi-mono- and polyubiquitinated proteins suring that the minimal requirements are somewhat inconsistent with findings that at the proteasome are similar. Lu et al. (5) find met for its multiple substrates, as such effi-an APC/C substrate binding event leads that a ubiquitin chain, irrespective of length, ciency is likely important to coordinate the to processive ubiquitin amplification by has to be present to activate proteasomal fundamental processes of cell division.

UBE2S ( 7, 8).degradation. The first step in degradation is The idea that proteasomal degradation The observed APC/C activity is consistent the initiation of translocating a protein into relies on nondiscriminative bulk modifi-with previous mass-spectrometry analysis the degradation chamber. This requires ad-cation of proteins, rather than single long on cyclin B ( 9), a protein involved in push-enosine 5′-triphosphate (ATP). Locking the chains, may rationalize many findings at ing the cell through the mitosis phase of proteasome in an ATP-bound state improved odds with prior models ( 15), and suggests the cell cycle, but raises questions about residence times for substrates modified with that single-chain ubiquitination events whether a such modified protein is a good chains of ubiquitin, suggesting that in this could be repurposed for alternative and state, the proteasome exposes a chain recep-nondegradative processes. ■

other study by Lu et al. (5) compares sub-tor near the entry channel.

strates modified with four monoubiquitins, The proteasome does not degrade ubiq-REFERENCES

two diubiquitins, or one tetraubiquitin mol-uitin, but rather recycles it, and for this, it 1. D. Finley, Annu. Rev. Biochem. 78, 477 (2009).

ecule, showing that the protein modified employs several different deubiquitinases 2. D. Komander, M. Rape, Annu. Rev. Biochem. 81, 203 (2012).

3. I. Primorac, A. Musacchio, J. Cell Biol. 201, 177 (2013).

with two diubiquitins is the superior prote-( 1). The deubiquitinase Rpn11 is located 4. Y. Lu, W. Weiping, M. W. Kirschner, Science 348, 1248737 asome substrate. This overturns a paradigm near the entry channel (11, 14). Closing (2015).

in the ubiquitin-proteasome field stating the circle, Lu et al. (5) study Rpn11–medi- 5. Y. Lu, B.-H. Lee, R. W. King, D. Finley, M. W. Kirschner,

Science 348, 1250834 (2015).

that a proteasome substrate must harbor ated deubiquitination of substrates at the 6. L. Chang et al., Nature 513, 388 (2014).

a tetraubiquitin chain to be degraded ( 10), proteasome, at single-molecule resolution, 7. K. E. Wickliffe et al., Cell 144, 769 (2011).

but is consistent with substantial structural and show that Rpn11 releases the complete 8. H.-J. Meyer, M. Rape, Cell 157, 910 (2014).

9. D. S. Kirkpatrick et al., Nat. Cell Biol. 8, 700 (2006).

data ( 11, 12) that have failed to identify a short chains of ubiquitin in a coordinated 10. J. S. Thrower et al., EMBO J. 19, 94 (2000).

tetraubiquitin receptor on the proteasome. fashion as the substrate is pulled into the 11. G. C. Lander et al., Nature 482, 186 (2012).

Correlating proteasome residence times proteasome. This mode of Rpn11 activation 12. E. Sakata et al., Proc. Natl. Acad. Sci. U.S.A. 109, 1479

(2012).

with the number of ubiquitins on a sub-has been suggested recently ( 13, 14). 13. E. J. Worden et al., Nat. Struct. Mol. Biol. 21, 220 (2014). strate, Lu et al. (5) reveal cooperative bind-The findings of Lu et al. (4, 5) reveal how 14. G. R. Pathare et al., Proc. Natl. Acad. Sci. U.S.A. 111, 2984 ing for the first three ubiquitin molecules, protein degradation can be used as a rapid (2014).

15. K. Flick et al., Nat. Cell Biol. 6, 634 (2004). and linear, stochastic increase in residence and efficient means to regulate cellular pro-

time with additional ubiquitin. Although cesses. The proteasome has a quantitative 10.1126/science.aab0931184 10 APRIL 2015 ? VOL 348 ISSUE http://wendang.chazidian.com SCIENCE

Published by AAASECNEICS/NAINULTOA .V :NOIATRTSULLI

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

外研版英语三起5年级下册(14版)Module3 Unit2
冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
沪教版八年级下册数学练习册21.4(1)无理方程P18
青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
外研版英语七年级下册module3 unit1第二课时
外研版八年级英语下学期 Module3
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
外研版英语七年级下册module3 unit2第一课时
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
人教版历史八年级下册第一课《中华人民共和国成立》
北师大版小学数学四年级下册第15课小数乘小数一
二年级下册数学第一课
三年级英语单词记忆下册(沪教版)第一二单元复习
人教版二年级下册数学
冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
北师大版数学四年级下册第三单元第四节街心广场
外研版英语三起6年级下册(14版)Module3 Unit2
七年级英语下册 上海牛津版 Unit5
北师大版数学 四年级下册 第三单元 第二节 小数点搬家
8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
沪教版牛津小学英语(深圳用)五年级下册 Unit 1
冀教版小学数学二年级下册第二单元《租船问题》
北师大版数学四年级下册3.4包装
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
苏教版二年级下册数学《认识东、南、西、北》
二年级下册数学第二课
《空中课堂》二年级下册 数学第一单元第1课时