教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 经管营销> 生产/经营管理> 一种基于角色的信任管理框架设计

一种基于角色的信任管理框架设计

上传者:陆佶人
|
上传时间:2015-05-06
|
次下载

一种基于角色的信任管理框架设计

内容需要下载文档才能查看

EUROJTranspLogist(2013)2:187–229

DOI10.1007/s13676-012-0017-6

RESEARCHPAPER

Staticrepositioninginabike-sharingsystem:modelsandsolutionapproaches

TalRaviv?MichalTzur?IrisA.Forma

Received:2May2012/Accepted:12December2012/Publishedonline:8January2013

ÓSpringer-VerlagBerlinHeidelbergandEURO-TheAssociationofEuropeanOperationalResearchSocieties2013

AbstractBike-sharingsystemsallowpeopletorentabicycleatoneofmanyautomaticrentalstationsscatteredaroundthecity,usethemforashortjourneyandreturnthematanystationinthecity.Acrucialfactorforthesuccessofabike-sharingsystemisitsabilitytomeetthe?uctuatingdemandforbicyclesandforvacantlockersateachstation.Thisisachievedbymeansofarepositioningoper-ation,whichconsistsofremovingbicyclesfromsomestationsandtransferringthemtootherstations,usingadedicated?eetoftrucks.Operatingsucha?eetinalargebike-sharingsystemisanintricateproblemconsistingofdecisionsregardingtheroutesthatthevehiclesshouldfollowandthenumberofbicyclesthatshouldberemovedorplacedateachstationoneachvisitofthevehicles.Inthispaper,wepresentourmodelingapproachtotheproblemthatgeneralizesexistingroutingmodelsintheliterature.Thisisdonebyintroducingauniqueconvexobjectivefunctionaswellastime-relatedconsiderations.Wepresenttwomixedintegerlinearprogramformulations,discusstheassumptionsassociatedwitheach,strengthenthembyseveralvalidinequalitiesanddominancerules,andcomparetheirperfor-mancesthroughanextensivenumericalstudy.Theresultsindicatethatoneoftheformulationsisveryeffectiveinobtaininghighqualitysolutionstoreallifeinstancesoftheproblemconsistingofupto104stationsandtwovehicles.Finally,wedrawinsightsonthecharacteristicsofgoodsolutions.

T.Raviv(&)ÁM.TzurÁI.A.Forma

IndustrialEngineeringDepartment,TelAvivUniversity,69978TelAviv,Israel

e-mail:talraviv@eng.tau.ac.il

M.Tzur

e-mail:tzur@eng.tau.ac.il

I.A.Forma

e-mail:irisforma@eng.tau.ac.il;Irisf@afeka.ac.il

I.A.Forma

AfekaTelAvivAcademicCollegeofEngineering,BneiEfraim218,TelAviv,Israel

123

188T.Ravivetal.Keywords

problemBike-sharingsystemsÁStaticrepositioningÁPickupanddelivery

Introductionandproblemde?nition

Bike-sharingsystemsallowpeopletorentabicycleatoneofthemanyautomaticrentalstationsscatteredaroundthecity,usethemforashortjourneyandreturnthematanystationinthecity.Recentlymanycitiesaroundtheworldestablishedsuchsystemsinordertoencouragetheircitizenstousebicyclesasanenvironmentallysustainableandsociallyequitablemodeoftransportation,andasagoodcomplementtoothermodesofmasstransitsystems(mode-sharing).

Arentalstationtypicallyincludesoneterminalandseveralbicyclestands.Theterminalisadevicecapableofcommunicatingwiththeelectroniclockers,whichareattachedtothebicyclestands.Whenauserrentsabicycle,asignalissenttotheterminalthatthelockerhasbeenvacated.Ausercanreturnabicycletoastationonlywhenthereisavacantlocker.Allrentalandreturntransactionsarerecordedandreportedinrealtimetoacentralcontrolfacility.Thus,thestateofthesystem,intermsofthenumberofbicyclesandnumberofvacantlockersavailableateachstation,isknowntotheoperatorinrealtime.Moreover,operatorsofbike-sharingsystemsmakethisinformationavailabletotheusersonline.

Acrucialfactorinthesuccessofabike-sharingsystemisitsabilitytomeetthe?uctuatingdemandforbicyclesateachstation.Inaddition,thesystemshouldbeabletoprovideenoughvacantlockerstoallowtheuserstoreturnthebicyclesattheirdestinations.Indeed,oneofthemaincomplaintsheardfromusersofbike-sharingsystemsrelatestounavailabilityofbicyclesand(evenworse)unavailabilityoflockersattheirdestination,see,e.g.,ShaheenandGuzman(2011)andmediareportsBrusselNieuws(2010)andTusia-Cohen(2012).Persistentunavailabilityofbicyclesand/orlockersengendersdistrustamongthesystem’susersandcouldeventuallyleadthemtoabandonit.

Wemeasureuserdissatisfactionwiththesystemthroughtheexpectednumberofshortageevents.Suchaneventoccurswhenauserwhowishestorentabicyclearrivesatanemptystationorauserwhowishestoreturnabicyclearrivesatafullstation,withnovacantlockers.Inordertoreduceshortages,operatorsofbike-sharingsystemsareresponsibletoregularlyremovebicyclesfromsomestationsandtransferthemtootherstations,usingadedicated?eetoflighttrucks.Werefertothisactivityasrepositioningofbicycles.Thegoalsoftheoperatorsaretominimizethenumberofshortagesincurredinthesystemandthe?eet’soperationalcosts.Consequently,repositioningofbicyclesinthesysteminvolvesroutingdecisionsconcerningthevehicles,startingfromandreturningtothedepot,andinventorydecisionsconcerningbicyclesintherentalstations.Thelatterinvolvesdeterminingthenumberofbicyclestoberemovedorplacedineachstationoneachvisitofthevehicles.Ideally,theoutcomeofthisoperationwouldbetomeetalldemandforbicyclesandvacantlockers,butthismaynotbepossibleduetodemanduncertainty,capacityconstraintsofthevehiclesandthestations,andtheinherentimbalancesintherentingandreturnratesatthevariousstations.Theimbalanceissometimes123

Staticrepositioninginabike-sharingsystem:modelsandsolutionapproaches189temporary,e.g.,highreturnrateinasuburbantrainstationduringthemorningandahighrentingrateduringtheafternoon,orpersistent,e.g.,relativelylowreturnratesinstationslocatedontopofhills.Therefore,anewmodelingapproachisrequired;onethatwillcorrectlyrepresentapracticalobjectiveoftherepositioningoperation,relatedtotheusers’satisfactionwiththesystem.Towardthatwede?neapenaltyfunction,whichrepresentstheexpectednumberofshortagesatanyinventorylevelateachstation.Theuseofsuchanobjective,combinedwithnewmodelcharacteristics,istheessenceofthispaper.

Therepositioningoperationcanbecarriedoutintwodifferentmodes:oneisduringthenightwhentheusagerateofthesystemisnegligible;theotherisduringthedaywhenthestatusofthesystemisrapidlychanging.Werefertotheformerasthestaticbicyclerepositioningproblem(SBRP)andtothelatterasthedynamicbicyclerepositioningproblem(DBRP).Someoperatorsusestaticrepositioning,

´(2009).somedynamic,andsomeuseacombinationofthetwo,Calle

Inthispaper,wefocusonthestaticmodeofoperationwhichbene?tsfromapracticaladvantagebecauseitallowstherepositioning?eettotravelswiftlyinthecitywithoutcontributingtotraf?ccongestionandparkingproblems.Staticrepositioningisusefulforarrangingtheinventoryofbicyclesinthesystemtowardthenextday.Whencombinedwithdynamicrepositioning,itreducestheamountofworkrequiredinthelattermode.Thestaticproblemneedstobesolvedonceatthebeginningofeverynight,basedonthestatusofthesystematthattimeandthedemandforecastforthenextday.Whiletheproblemliesinthegeneraldomainofvehicleroutingproblems,itinvolvessomeuniquecharacteristicsthatrequireappropriatemodeling.Themodelwepresentinthispapergeneralizesexistingroutingmodelsfromtheliterature,asshowninthenextsection.

Weformallyde?netheSBRPasfollows.Theinputoftheproblemisasetofstations,withonedesignatedasthedepot;initialinventory,capacity,andaconvexpenaltyfunctionforeachstation;atravel-timematrixbetweenstations;andasetofnon-identicalcapacitatedrepositioningvehicles.Asolutionisde?nedbyarouteforeachvehicleandthequantityofbicyclestoloadorunloadateachstationalongthisroute.Theplannedroutesmustsatisfyatimeconstraint.Thelengthofeachrouteiscalculatedasthesumofthetraveltimesbetweenallpairsofconsecutivestationsalongtherouteplusthetimeneededforloadingandunloadingatthestations,whichdependsonthequantitiesofbicycleshandled.Thegoalistominimizeaweightedobjectivethatconsistsofthesumofthestations’penaltycostsandthetotaloperatingcostsofthevehicles.Thisproblemde?nitiongeneralizesourpreliminarywork,seeFormaetal.(2010).

Thepenaltyfunctionateachstationmayrepresentanyobjectiveoftheoperator,aslongasitisconvexintheendinginventoryofthestation.Weadvocatetheusageofpenaltyfunctionsthatrepresenttheexpectednumberofshortagesinastationduringthenextdaygivenitsinitialinventory,itscapacity,andthestochasticcharacteristicsofthedemandprocess.RavivandKolka(2012)presentanef?cientproceduretocalculatethesefunctionsandprovetheirconvexity.Forthesakeofcompleteness,wesummarizedtherelevantresultsfromtheirpaperinAppendixA.Formoredetails,thereaderisreferredtothatpaper.

ThecontributionofthispaperisinpresentinganewandpracticalapproachtomodelingtheSBRP.Itinvolvesde?ninganon-traditionalobjectivefunction,which

123

190T.Ravivetal.isrelatedtothesatisfactionofusersinthesystem.Italsoincludesothernewcharacteristicssuchasloadingandunloadingtimeswithinatimeconstrainedsetting.Basedonthisapproachwepresenttwomixedintegerlinearprogram(MILP)formulations,whichdifferfromeachotherintheirmodelingchoicesandunderlyingassumptions.Onthemethodologicalside,theaboveformulationsarestrengthenedbysomevalidinequalitiesanddominancerulesthatarelikelytobeusefulinotherroutingproblems,especiallythosethataregeneralizedbythiswork.Finally,weappliedourmethodsonavarietyoflargeinstancesbasedonrealdataandachievedsmalloptimalitygapswithinareasonabletime.

Therestofthispaperisorganizedasfollows:in‘‘Literaturereview’’,wereviewtheliterature,describerelatedworkfromseveralapplicationareasandidentifythegapsthatshouldbeaddressed.In‘‘Modelformulation’’,wepresentourmodelingapproachbyspecifyingtheunderlyingassumptions,elaboratingonthechosenobjectivefunction,andpresentingourmathematicalformulations.In‘‘Algorithmicenhancements’’,wediscussalgorithmicenhancementsthatareusefulinsolvingthemathematicalmodelseffectively.In‘‘Numericalexperiments’’,wedescribeournumericalexperiments,theresults,andtheiranalysis.Finally,in‘‘Conclusionsanddiscussion’’,wediscusspossibleextensionsanddirectionsforfurtherresearch.Literaturereview

Inthissection,we?rstreviewrecentstudiesonbike-sharingsystemsandinparticularontherepositioningoperationinthosesystems.Thenwediscusstherelationoftherepositioningproblemtoclassicalroutingandinventory/routingproblemsfromtheliterature.

Modernbike-sharingsystemshavebecomeprevalentonlyinthelastfewyears;therefore,theexistingliteratureanalyzingthesesystemsisrelativelynew.Therearevariousinterestingresearchquestionsconcerningtheestablishment,operationandanalysisofbike-sharingsystems.Indeed,someworksstudystrategicproblems,suchasShuetal.(2010)andLinandYang(2011)whoaddressthequestionofbikerentalstations’capacityandlocations.Otherspresentempiricalanalysis,e.g.,DeMaio(2009)andHampshireandMarla(2011).FrickerandGast(2012)studythesystem’sbehaviorandtheeffectofvariousload-balancingstrategiesontheirperformances.Theyconcludethatinasymmetricsystems,repositioningofbicyclesbytrucksisnecessaryevenwhenanincentivemechanismtoself-balanceitisputinplace.VogelandMattfeld(2010)presentastylizedmodeltoassesstheeffectofdynamicrepositioningeffortsonservicelevels.Theirmodelisusefulforstrategicplanningbutisnotdetailedenoughtosupportrepositioningoperations.

Severalapproachestomodelingandoptimizingtherepositioningproblemhaverecentlybeendeveloped.Thereareessentialdifferencesbetweenthemintheunderlyingassumptionsconcerningtheperceivedsystem’sbehaviorandtheproblem’sobjective,aswediscussnext.Benchimoletal.(2011)andChemlaetal.(2011)addressthestaticrepositioningproblem,assumingthatagiventargetinventorylevelexistsforeachstationinthesystemsothattheobjectiveoftherepositioningoperationistoachievethistargetatminimumtravelcost.Themethod123

Staticrepositioninginabike-sharingsystem:modelsandsolutionapproaches191bywhichthetargetlevelsareobtainedisnotspeci?ed.Sincenodeviationfromthetargetlevelisallowed,notimeconstraintisimposedontherepositioningoperation(otherwise,itmaynotbefeasible).AresultoftheseassumptionsisthattheproblemresemblesthedeterministicC-deliveryTSP(ChalasaniandMotwani1999)orasinglevehicle,singlecommoditypickupanddeliveryproblem(PDP),discussed

?anetal.(2012)extendtheabovestudiesbyallowingthe?nalbelow.Erdog

inventoryateachstationtobewithinapre-speci?edintervalinsteadofatagiventargetvalue.

Themodelspresentedinthispapergeneralizetheabove-mentionedstudiessincewedonotspecifyatargetinventorylevelorinterval,butratherallowreachinganyinventorylevelanduseaconvexpenaltyfunctiontoexpressitscost.Indeed,the

?anetal.(2012)(resp.,ChemlaSBRPcanbecastastheproblempresentedinErdog

etal.(2011))byselectingpenaltyfunctionsthatassignavalueofzeroforeach?nalinventorylevelinsidethedesiredinterval(resp.,atthetargetlevel)andaverylargenumberforeachinventoryleveloutsideit(resp.,differentfromit).

Contardoetal.(2012)presentamathematicalprogrammingformulationforthedynamicrepositioningproblem(DBRP)andusedecompositionschemestoobtainlowerboundsandfeasiblesolutions.Althoughtheirformulationbearssomesimilaritytoourtime-indexedformulation,see‘‘Time-indexedformulation’’,therearetwoimportantdifferences:?rst,theirsettingisdeterministicanddoesnottakeintoconsiderationthestochasticnatureofthedemandsforbicyclesandforlockerswhileinourmodelthisstochasticitycanbeexpressedbytheconvexpenaltyfunction.Second,ourmodelincludesloadingandunloadingtimes,whichareproportionaltothenumberofbicyclesloaded/unloaded,whereasContardoetal.(2012)donotrefertothesetimesanditisunclearwhetherandhowtheycanbeincorporatedintheirformulationorintheirsolutionmethod.Inpractice,loadingandunloadingtimescompriseamajorportionoftherepositioningtime;hence,theirinclusioniscrucialforacorrectrepresentationoftheproblemandforobtaininggoodrepositioningplans.

NairandMiller-Hooks(2011)useastochasticprogrammingapproachtoperformrepositioninginsharedmobilitysystems.Theirmodelassumesthatthecostofmovingobjects(bicyclesorcars)betweentwogivenstationsisknownandrepresentedbya?xedplus-linearfunction,sothatnoroutingconstraintsandcostsareconsidered.Thisassumptionmayberealisticfortheone-waycar-sharingsystemsthatmotivatedtheirwork,buttoosimplisticforthebicyclerepositioningproblemaddressedhere.Moreover,theirmodelcalculatesvehicleshortagesbasedonthenetdemandduringsomeplanningperiod,whichdoesnottakeintoconsiderationthedynamicsofthedemandduringthatperiod.Suchcalculationsmaybevalidonlywhenarelativelyshortplanningperiodisconsidered.

RavivandKolka(2012)showhowtocalculatetheexpectednumberofshortagesasafunctionoftheinventorylevelatthebeginningoftheday,whichcanbeusedinourmodeltorepresentthedynamicsofthedemand.Theirmethodrequiresasinputtheratesoftwoindependentnon-homogenousPoissondemandstreamsforusersseekingtorentbicyclesandusersseekingtoreturnbicyclesatasinglestation,duringsomeplanningperiod,e.g.,duringthenextday.Althoughtheirmodelconsidersonlyasinglestationsystem,theydemonstratethroughsimulationthat

123

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

2018湖南省考行测题库:行测每日一练判断推理练习题答案08.30
2018湖南省考行测题库:行测每日一练资料分析练习题答案08.24
2018湖南省考面试模拟题:紧急会议联系不到领导怎么办
湖南省考行测题库:行测每日一练资料分析练习题答案09.07
2018湖南省考面试题库:面试每日一练结构化面试模拟题答案9.5
湖南省考行测题库:行测每日一练数量关系练习题答案09.08
2018湖南省考面试题库:面试每日一练结构化面试模拟题9.5
2018湖南省考行测题库:行测每日一练数量关系练习题答案08.25
2018湖南省考行测题库:行测每日一练资料分析练习题答案08.31
2018湖南省考行测题库:行测每日一练言语理解与表达练习题答案08.28
湖南省考行测题库:行测每日一练数量关系练习题09.08
2018湖南省考面试题库:面试每日一练结构化面试模拟题8.29
2018湖南省考行测题库:行测每日一练常识判断练习题08.29
2018湖南省考面试题库:面试每日一练结构化面试模拟题9.4
2018湖南省考面试题库:面试每日一练结构化面试模拟题8.30
2018湖南省考面试题库:面试每日一练结构化面试模拟题答案8.24
2018湖南省考面试题库:面试每日一练结构化面试模拟题8.23
2018湖南省考面试题库:面试每日一练结构化面试模拟题答案9.4
2018湖南省考面试题库:面试每日一练结构化面试模拟题答案8.23
2018湖南省考面试题库:面试每日一练结构化面试模拟题9.1
2018湖南省考行测题库:行测每日一练常识判断练习题答案08.29
2018湖南省考面试题库:面试每日一练结构化面试模拟题8.24
2018湖南省考行测题库:行测每日一练数量关系练习题答案09.01
2018湖南省考面试题库:面试每日一练结构化面试模拟题答案8.25
2018湖南省考行测题库:行测每日一练言语理解与表达练习题08.28
2018湖南省考行测题库:行测每日一练数量关系练习题09.01
2018湖南省考申论每周一练答案:建设共有产权住房
2018湖南省考面试题库:面试每日一练结构化面试模拟题答案8.29
2018湖南省考面试题库:面试每日一练结构化面试模拟题答案8.31
2018湖南省考面试题库:面试每日一练结构化面试模拟题8.25

网友关注视频

沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
苏科版数学八年级下册9.2《中心对称和中心对称图形》
沪教版牛津小学英语(深圳用)五年级下册 Unit 1
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
外研版英语七年级下册module3 unit1第二课时
青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
外研版英语七年级下册module1unit3名词性物主代词讲解
冀教版小学英语五年级下册lesson2教学视频(2)
外研版八年级英语下学期 Module3
人教版二年级下册数学
六年级英语下册上海牛津版教材讲解 U1单词
沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
外研版英语三起5年级下册(14版)Module3 Unit2
小学英语单词
外研版英语三起6年级下册(14版)Module3 Unit2
沪教版八年级下册数学练习册21.3(2)分式方程P15
第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
沪教版八年级下册数学练习册21.3(3)分式方程P17
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
冀教版小学数学二年级下册第二单元《租船问题》
3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
苏科版八年级数学下册7.2《统计图的选用》
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
冀教版小学数学二年级下册1