教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 经管营销> 生产/经营管理> 一种基于角色的信任管理框架设计

一种基于角色的信任管理框架设计

上传者:陆佶人
|
上传时间:2015-05-06
|
次下载

一种基于角色的信任管理框架设计

内容需要下载文档才能查看

EUROJTranspLogist(2013)2:187–229

DOI10.1007/s13676-012-0017-6

RESEARCHPAPER

Staticrepositioninginabike-sharingsystem:modelsandsolutionapproaches

TalRaviv?MichalTzur?IrisA.Forma

Received:2May2012/Accepted:12December2012/Publishedonline:8January2013

ÓSpringer-VerlagBerlinHeidelbergandEURO-TheAssociationofEuropeanOperationalResearchSocieties2013

AbstractBike-sharingsystemsallowpeopletorentabicycleatoneofmanyautomaticrentalstationsscatteredaroundthecity,usethemforashortjourneyandreturnthematanystationinthecity.Acrucialfactorforthesuccessofabike-sharingsystemisitsabilitytomeetthe?uctuatingdemandforbicyclesandforvacantlockersateachstation.Thisisachievedbymeansofarepositioningoper-ation,whichconsistsofremovingbicyclesfromsomestationsandtransferringthemtootherstations,usingadedicated?eetoftrucks.Operatingsucha?eetinalargebike-sharingsystemisanintricateproblemconsistingofdecisionsregardingtheroutesthatthevehiclesshouldfollowandthenumberofbicyclesthatshouldberemovedorplacedateachstationoneachvisitofthevehicles.Inthispaper,wepresentourmodelingapproachtotheproblemthatgeneralizesexistingroutingmodelsintheliterature.Thisisdonebyintroducingauniqueconvexobjectivefunctionaswellastime-relatedconsiderations.Wepresenttwomixedintegerlinearprogramformulations,discusstheassumptionsassociatedwitheach,strengthenthembyseveralvalidinequalitiesanddominancerules,andcomparetheirperfor-mancesthroughanextensivenumericalstudy.Theresultsindicatethatoneoftheformulationsisveryeffectiveinobtaininghighqualitysolutionstoreallifeinstancesoftheproblemconsistingofupto104stationsandtwovehicles.Finally,wedrawinsightsonthecharacteristicsofgoodsolutions.

T.Raviv(&)ÁM.TzurÁI.A.Forma

IndustrialEngineeringDepartment,TelAvivUniversity,69978TelAviv,Israel

e-mail:talraviv@eng.tau.ac.il

M.Tzur

e-mail:tzur@eng.tau.ac.il

I.A.Forma

e-mail:irisforma@eng.tau.ac.il;Irisf@afeka.ac.il

I.A.Forma

AfekaTelAvivAcademicCollegeofEngineering,BneiEfraim218,TelAviv,Israel

123

188T.Ravivetal.Keywords

problemBike-sharingsystemsÁStaticrepositioningÁPickupanddelivery

Introductionandproblemde?nition

Bike-sharingsystemsallowpeopletorentabicycleatoneofthemanyautomaticrentalstationsscatteredaroundthecity,usethemforashortjourneyandreturnthematanystationinthecity.Recentlymanycitiesaroundtheworldestablishedsuchsystemsinordertoencouragetheircitizenstousebicyclesasanenvironmentallysustainableandsociallyequitablemodeoftransportation,andasagoodcomplementtoothermodesofmasstransitsystems(mode-sharing).

Arentalstationtypicallyincludesoneterminalandseveralbicyclestands.Theterminalisadevicecapableofcommunicatingwiththeelectroniclockers,whichareattachedtothebicyclestands.Whenauserrentsabicycle,asignalissenttotheterminalthatthelockerhasbeenvacated.Ausercanreturnabicycletoastationonlywhenthereisavacantlocker.Allrentalandreturntransactionsarerecordedandreportedinrealtimetoacentralcontrolfacility.Thus,thestateofthesystem,intermsofthenumberofbicyclesandnumberofvacantlockersavailableateachstation,isknowntotheoperatorinrealtime.Moreover,operatorsofbike-sharingsystemsmakethisinformationavailabletotheusersonline.

Acrucialfactorinthesuccessofabike-sharingsystemisitsabilitytomeetthe?uctuatingdemandforbicyclesateachstation.Inaddition,thesystemshouldbeabletoprovideenoughvacantlockerstoallowtheuserstoreturnthebicyclesattheirdestinations.Indeed,oneofthemaincomplaintsheardfromusersofbike-sharingsystemsrelatestounavailabilityofbicyclesand(evenworse)unavailabilityoflockersattheirdestination,see,e.g.,ShaheenandGuzman(2011)andmediareportsBrusselNieuws(2010)andTusia-Cohen(2012).Persistentunavailabilityofbicyclesand/orlockersengendersdistrustamongthesystem’susersandcouldeventuallyleadthemtoabandonit.

Wemeasureuserdissatisfactionwiththesystemthroughtheexpectednumberofshortageevents.Suchaneventoccurswhenauserwhowishestorentabicyclearrivesatanemptystationorauserwhowishestoreturnabicyclearrivesatafullstation,withnovacantlockers.Inordertoreduceshortages,operatorsofbike-sharingsystemsareresponsibletoregularlyremovebicyclesfromsomestationsandtransferthemtootherstations,usingadedicated?eetoflighttrucks.Werefertothisactivityasrepositioningofbicycles.Thegoalsoftheoperatorsaretominimizethenumberofshortagesincurredinthesystemandthe?eet’soperationalcosts.Consequently,repositioningofbicyclesinthesysteminvolvesroutingdecisionsconcerningthevehicles,startingfromandreturningtothedepot,andinventorydecisionsconcerningbicyclesintherentalstations.Thelatterinvolvesdeterminingthenumberofbicyclestoberemovedorplacedineachstationoneachvisitofthevehicles.Ideally,theoutcomeofthisoperationwouldbetomeetalldemandforbicyclesandvacantlockers,butthismaynotbepossibleduetodemanduncertainty,capacityconstraintsofthevehiclesandthestations,andtheinherentimbalancesintherentingandreturnratesatthevariousstations.Theimbalanceissometimes123

Staticrepositioninginabike-sharingsystem:modelsandsolutionapproaches189temporary,e.g.,highreturnrateinasuburbantrainstationduringthemorningandahighrentingrateduringtheafternoon,orpersistent,e.g.,relativelylowreturnratesinstationslocatedontopofhills.Therefore,anewmodelingapproachisrequired;onethatwillcorrectlyrepresentapracticalobjectiveoftherepositioningoperation,relatedtotheusers’satisfactionwiththesystem.Towardthatwede?neapenaltyfunction,whichrepresentstheexpectednumberofshortagesatanyinventorylevelateachstation.Theuseofsuchanobjective,combinedwithnewmodelcharacteristics,istheessenceofthispaper.

Therepositioningoperationcanbecarriedoutintwodifferentmodes:oneisduringthenightwhentheusagerateofthesystemisnegligible;theotherisduringthedaywhenthestatusofthesystemisrapidlychanging.Werefertotheformerasthestaticbicyclerepositioningproblem(SBRP)andtothelatterasthedynamicbicyclerepositioningproblem(DBRP).Someoperatorsusestaticrepositioning,

´(2009).somedynamic,andsomeuseacombinationofthetwo,Calle

Inthispaper,wefocusonthestaticmodeofoperationwhichbene?tsfromapracticaladvantagebecauseitallowstherepositioning?eettotravelswiftlyinthecitywithoutcontributingtotraf?ccongestionandparkingproblems.Staticrepositioningisusefulforarrangingtheinventoryofbicyclesinthesystemtowardthenextday.Whencombinedwithdynamicrepositioning,itreducestheamountofworkrequiredinthelattermode.Thestaticproblemneedstobesolvedonceatthebeginningofeverynight,basedonthestatusofthesystematthattimeandthedemandforecastforthenextday.Whiletheproblemliesinthegeneraldomainofvehicleroutingproblems,itinvolvessomeuniquecharacteristicsthatrequireappropriatemodeling.Themodelwepresentinthispapergeneralizesexistingroutingmodelsfromtheliterature,asshowninthenextsection.

Weformallyde?netheSBRPasfollows.Theinputoftheproblemisasetofstations,withonedesignatedasthedepot;initialinventory,capacity,andaconvexpenaltyfunctionforeachstation;atravel-timematrixbetweenstations;andasetofnon-identicalcapacitatedrepositioningvehicles.Asolutionisde?nedbyarouteforeachvehicleandthequantityofbicyclestoloadorunloadateachstationalongthisroute.Theplannedroutesmustsatisfyatimeconstraint.Thelengthofeachrouteiscalculatedasthesumofthetraveltimesbetweenallpairsofconsecutivestationsalongtherouteplusthetimeneededforloadingandunloadingatthestations,whichdependsonthequantitiesofbicycleshandled.Thegoalistominimizeaweightedobjectivethatconsistsofthesumofthestations’penaltycostsandthetotaloperatingcostsofthevehicles.Thisproblemde?nitiongeneralizesourpreliminarywork,seeFormaetal.(2010).

Thepenaltyfunctionateachstationmayrepresentanyobjectiveoftheoperator,aslongasitisconvexintheendinginventoryofthestation.Weadvocatetheusageofpenaltyfunctionsthatrepresenttheexpectednumberofshortagesinastationduringthenextdaygivenitsinitialinventory,itscapacity,andthestochasticcharacteristicsofthedemandprocess.RavivandKolka(2012)presentanef?cientproceduretocalculatethesefunctionsandprovetheirconvexity.Forthesakeofcompleteness,wesummarizedtherelevantresultsfromtheirpaperinAppendixA.Formoredetails,thereaderisreferredtothatpaper.

ThecontributionofthispaperisinpresentinganewandpracticalapproachtomodelingtheSBRP.Itinvolvesde?ninganon-traditionalobjectivefunction,which

123

190T.Ravivetal.isrelatedtothesatisfactionofusersinthesystem.Italsoincludesothernewcharacteristicssuchasloadingandunloadingtimeswithinatimeconstrainedsetting.Basedonthisapproachwepresenttwomixedintegerlinearprogram(MILP)formulations,whichdifferfromeachotherintheirmodelingchoicesandunderlyingassumptions.Onthemethodologicalside,theaboveformulationsarestrengthenedbysomevalidinequalitiesanddominancerulesthatarelikelytobeusefulinotherroutingproblems,especiallythosethataregeneralizedbythiswork.Finally,weappliedourmethodsonavarietyoflargeinstancesbasedonrealdataandachievedsmalloptimalitygapswithinareasonabletime.

Therestofthispaperisorganizedasfollows:in‘‘Literaturereview’’,wereviewtheliterature,describerelatedworkfromseveralapplicationareasandidentifythegapsthatshouldbeaddressed.In‘‘Modelformulation’’,wepresentourmodelingapproachbyspecifyingtheunderlyingassumptions,elaboratingonthechosenobjectivefunction,andpresentingourmathematicalformulations.In‘‘Algorithmicenhancements’’,wediscussalgorithmicenhancementsthatareusefulinsolvingthemathematicalmodelseffectively.In‘‘Numericalexperiments’’,wedescribeournumericalexperiments,theresults,andtheiranalysis.Finally,in‘‘Conclusionsanddiscussion’’,wediscusspossibleextensionsanddirectionsforfurtherresearch.Literaturereview

Inthissection,we?rstreviewrecentstudiesonbike-sharingsystemsandinparticularontherepositioningoperationinthosesystems.Thenwediscusstherelationoftherepositioningproblemtoclassicalroutingandinventory/routingproblemsfromtheliterature.

Modernbike-sharingsystemshavebecomeprevalentonlyinthelastfewyears;therefore,theexistingliteratureanalyzingthesesystemsisrelativelynew.Therearevariousinterestingresearchquestionsconcerningtheestablishment,operationandanalysisofbike-sharingsystems.Indeed,someworksstudystrategicproblems,suchasShuetal.(2010)andLinandYang(2011)whoaddressthequestionofbikerentalstations’capacityandlocations.Otherspresentempiricalanalysis,e.g.,DeMaio(2009)andHampshireandMarla(2011).FrickerandGast(2012)studythesystem’sbehaviorandtheeffectofvariousload-balancingstrategiesontheirperformances.Theyconcludethatinasymmetricsystems,repositioningofbicyclesbytrucksisnecessaryevenwhenanincentivemechanismtoself-balanceitisputinplace.VogelandMattfeld(2010)presentastylizedmodeltoassesstheeffectofdynamicrepositioningeffortsonservicelevels.Theirmodelisusefulforstrategicplanningbutisnotdetailedenoughtosupportrepositioningoperations.

Severalapproachestomodelingandoptimizingtherepositioningproblemhaverecentlybeendeveloped.Thereareessentialdifferencesbetweenthemintheunderlyingassumptionsconcerningtheperceivedsystem’sbehaviorandtheproblem’sobjective,aswediscussnext.Benchimoletal.(2011)andChemlaetal.(2011)addressthestaticrepositioningproblem,assumingthatagiventargetinventorylevelexistsforeachstationinthesystemsothattheobjectiveoftherepositioningoperationistoachievethistargetatminimumtravelcost.Themethod123

Staticrepositioninginabike-sharingsystem:modelsandsolutionapproaches191bywhichthetargetlevelsareobtainedisnotspeci?ed.Sincenodeviationfromthetargetlevelisallowed,notimeconstraintisimposedontherepositioningoperation(otherwise,itmaynotbefeasible).AresultoftheseassumptionsisthattheproblemresemblesthedeterministicC-deliveryTSP(ChalasaniandMotwani1999)orasinglevehicle,singlecommoditypickupanddeliveryproblem(PDP),discussed

?anetal.(2012)extendtheabovestudiesbyallowingthe?nalbelow.Erdog

inventoryateachstationtobewithinapre-speci?edintervalinsteadofatagiventargetvalue.

Themodelspresentedinthispapergeneralizetheabove-mentionedstudiessincewedonotspecifyatargetinventorylevelorinterval,butratherallowreachinganyinventorylevelanduseaconvexpenaltyfunctiontoexpressitscost.Indeed,the

?anetal.(2012)(resp.,ChemlaSBRPcanbecastastheproblempresentedinErdog

etal.(2011))byselectingpenaltyfunctionsthatassignavalueofzeroforeach?nalinventorylevelinsidethedesiredinterval(resp.,atthetargetlevel)andaverylargenumberforeachinventoryleveloutsideit(resp.,differentfromit).

Contardoetal.(2012)presentamathematicalprogrammingformulationforthedynamicrepositioningproblem(DBRP)andusedecompositionschemestoobtainlowerboundsandfeasiblesolutions.Althoughtheirformulationbearssomesimilaritytoourtime-indexedformulation,see‘‘Time-indexedformulation’’,therearetwoimportantdifferences:?rst,theirsettingisdeterministicanddoesnottakeintoconsiderationthestochasticnatureofthedemandsforbicyclesandforlockerswhileinourmodelthisstochasticitycanbeexpressedbytheconvexpenaltyfunction.Second,ourmodelincludesloadingandunloadingtimes,whichareproportionaltothenumberofbicyclesloaded/unloaded,whereasContardoetal.(2012)donotrefertothesetimesanditisunclearwhetherandhowtheycanbeincorporatedintheirformulationorintheirsolutionmethod.Inpractice,loadingandunloadingtimescompriseamajorportionoftherepositioningtime;hence,theirinclusioniscrucialforacorrectrepresentationoftheproblemandforobtaininggoodrepositioningplans.

NairandMiller-Hooks(2011)useastochasticprogrammingapproachtoperformrepositioninginsharedmobilitysystems.Theirmodelassumesthatthecostofmovingobjects(bicyclesorcars)betweentwogivenstationsisknownandrepresentedbya?xedplus-linearfunction,sothatnoroutingconstraintsandcostsareconsidered.Thisassumptionmayberealisticfortheone-waycar-sharingsystemsthatmotivatedtheirwork,buttoosimplisticforthebicyclerepositioningproblemaddressedhere.Moreover,theirmodelcalculatesvehicleshortagesbasedonthenetdemandduringsomeplanningperiod,whichdoesnottakeintoconsiderationthedynamicsofthedemandduringthatperiod.Suchcalculationsmaybevalidonlywhenarelativelyshortplanningperiodisconsidered.

RavivandKolka(2012)showhowtocalculatetheexpectednumberofshortagesasafunctionoftheinventorylevelatthebeginningoftheday,whichcanbeusedinourmodeltorepresentthedynamicsofthedemand.Theirmethodrequiresasinputtheratesoftwoindependentnon-homogenousPoissondemandstreamsforusersseekingtorentbicyclesandusersseekingtoreturnbicyclesatasinglestation,duringsomeplanningperiod,e.g.,duringthenextday.Althoughtheirmodelconsidersonlyasinglestationsystem,theydemonstratethroughsimulationthat

123

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
沪教版八年级下册数学练习册21.3(3)分式方程P17
沪教版八年级下册数学练习册21.4(1)无理方程P18
苏教版二年级下册数学《认识东、南、西、北》
沪教版八年级下次数学练习册21.4(2)无理方程P19
外研版八年级英语下学期 Module3
沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
北师大版数学四年级下册第三单元第四节街心广场
七年级英语下册 上海牛津版 Unit3
北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
《空中课堂》二年级下册 数学第一单元第1课时
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
外研版英语七年级下册module3 unit2第二课时
二年级下册数学第三课 搭一搭⚖⚖
飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
北师大版数学 四年级下册 第三单元 第二节 小数点搬家
《小学数学二年级下册》第二单元测试题讲解
每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
二年级下册数学第一课
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
苏科版数学七年级下册7.2《探索平行线的性质》
北师大版数学四年级下册3.4包装
人教版二年级下册数学
二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
冀教版小学数学二年级下册第二单元《余数和除数的关系》