Least squares moving prticle semi-implicit
上传者:梁世中|上传时间:2015-05-06|密次下载
Least squares moving prticle semi-implicit
Comp.Part.Mech.(2014)1:277–305DOI10.1007/s40571-014-0027-2
Leastsquaresmovingparticlesemi-implicitmethod
AnarbitraryhighorderaccuratemeshfreeLagrangianapproachforincompressible?owwithfreesurfaces
TasukuTamai·SeiichiKoshizuka
Received:27February2014/Revised:8May2014/Accepted:26May2014/Publishedonline:11July2014©OWZ2014
AbstractInthispaper,aconsistentmeshfreeLagrangianapproachfornumericalanalysisofincompressible?owwithfreesurfaces,namedleastsquaresmovingparticlesemi-implicit(LSMPS)method,isdeveloped.Thepresentmethodologyincludesarbitraryhigh-orderaccuratemesh-freespatialdiscretizationschemes,consistenttimeintegra-tionschemes,andgeneralizedtreatmentofboundarycondi-tions.LSMPSmethodcanresolvetheexistingmajorissuesofwidelyusedstrong-formparticlemethodforincompressible?ow—particularly,thelackofconsistencyconditionforspa-tialdiscretizationschemes,dif?cultyinenforcingconsistentNeumannboundaryconditions,andseriousinstabilitylikeunphysicalpressureoscillation.Applicationsofthepresentproposaldemonstrateremarkableenhancementsofstabilityandaccuracy.
KeywordsLeastsquaresmovingparticlesemi-implicitmethod·LSMPSmethod·Highorderscheme·Meshfreecompactscheme·Movingparticlesemi-implicitmethod
1Introduction
Todaythe?niteelementmethod(FEM)[101],the?nitevol-umemethod(FVM)[98],andthe?nitedifferencemethod(FDM)[87]basedcomputationalmechanicsplayaconspic-uousroleintechnologyadvancement.Anoteworthyfeatureofthemisthattheydivideacontinuumdomainintodiscretesubdivisionusuallycalledmesh/grid,whichrequiresconnec-T.Tamai(B)·S.Koshizuka
GraduateSchoolofEngineering,TheUniversityofTokyo,7-3-1,Hongo,Bunkyo-ku,Tokyo113-8656,Japane-mail:tasuku@mps.q.t.u-tokyo.ac.jpS.Koshizuka
e-mail:koshizuka@sys.t.u-tokyo.ac.jp
tivitybasedonatopologicalmap;however,thecharacteris-ticofthemisnotalwayssuitable.Forinstance,inordertoadapttopologicalandgeometricchangesundergonebytherealmaterial,suchassimulationsof?uid?oworlargestraincontinuumdeformation,Lagrangiandescription(i.e.movingmesh/grid)couldbeapplied;however,onewouldfacedis-tortionofmesh/gridwhichresultsineitherterminationofthecomputationorseveredeteriorationinnumericalaccuracy.ArbitraryLagrangianEulerian(ALE)formulations[26,36]havebeendevelopedtoovercomethedif?cultycausedbydistortionofmesh/grid,ofwhichobjectiveistomovemesh/gridindependentlyfromactualmotionofmaterialsothatdis-tortioncouldbeminimized;nevertheless,distortionofmesh/gridstillremainsandcausesoverwhelmingerrorsinnumer-icalsolutions.
Underthesecircumstances,meshfreemethodsand/orpar-ticlemethods,whichdiscretizeacontinuumbyonlyasetofnodalpointsorparticles,havebeensoughtinorderto?ndbet-terdiscretizationprocedureswithoutmesh/gridconstraints.Sincetheconnectivityamongnodescanbegeneratedany-timedesiredandcanchangewithtime,meshfree/particlemethodscaneasilyhandlesimulationsofverylargedefor-mations,evenwiththechangesofthetopologicalstructureandfragmentation–coalescenceofcontinuum.
Ingeneral,accordingtocomputationalmodelingsandfor-mulations,meshfree/particlemethodscanbecategorizedintotwodifferentclassi?cationsaswell:theweakformformula-tionsofPartialDifferentialEquations(PDEs);andthestrongformformulationsofPDEs.The?rstclassofmeshfree/particlemethodsisusedwithvariousweakformulationssuchasGalerkinmethods,forexample,diffuseelementmethod(DEM)[73],elementfreeGelerkin(EFG)method[11,13–15,67],reproducingKernelparticlemethod(RKPM)[21,63–65],h-pcloudmethod[27,28,58,74],partitionofunitymethod(PUM)[7–9,69],meshlesslocalPetrov–Gelerkin
123
278(MLPG)method[2–6],?nitepointmethod(FPM)[75–77,80],particle?niteelementmethod(P-FEM)[38,78,79],reproducingKernelelementmethod(RKEM)[56,62,66,86].Thesecondcategoryofmeshfree/particlemethodsisusedtoapproximatethestrongformPDEsdiscretizedbyspe-ci?ccollocationtechniques,forinstance,smoothedparti-clehydrodynamics(SPH)method[31,60,68,71,72],movingparticlesemi-implicit(MPS)method[48,49],meshfree?nitedifferencemethod[57,59],?nitepointsetmethod(FPM)[95–97].
Invariousweakformmeshfree/particlemethods,shapefunctions,ormoregeneralmeshfreeinterpolants,arecon-structedbasedontheso-called“partitionofunity”,thencon-sistencyconditions,polynomialcompleteness,orreproduc-ingconditionsaresatis?ed.Ontheotherhand,althoughthestrongformparticlemethodssuchastheSPHmethodandtheMPSmethodhavebeenshowntobeusefulwidelyinengi-neeringapplicationsespeciallyin?uiddynamics,theirstan-dardformulaeofspatialdiscretizationschemesarenotcon-sistentexceptunderverylimitedconditions,anddonotholdpolynomialcompleteness/reproducingconditionsordiffer-entialcompleteness/reproducingconditions.AccordingtotheLax’sequivalencetheorem[51],thismajorissuemustneverbeoverlooked.Moreover,thismatteryieldsadverseeffectsforbothcomputationalaccuracyandstability.Somecorrectionmethodsforresolvingthelackofpolynomialcom-pletenessorreproducingconditionsonthespatialdiscretiza-tionschemes(whichwillbediscussedinChap.3)havebeenproposed;however,theyarefarfromadequateintermsofthecompatibilitywithsatisfactionofhigherorderconsis-tencyconditionsandnumericalstability.Strongformmesh-free/particlemethodsstillhaveadif?cultyrelatingtopro-ceduresofenforcingboundaryconditions,especiallyNeu-mannboundaryconditions.Hence,prevailingstrongformparticlemethods,whoseadvantageisthattheycanhand-ilyrunnumericalanalysisofcontinuumwithlargedefor-mation,evenwiththechangesoftopologicalstructureandfragmentation–coalescence,areinadequatelystudiedasanaccuratemathematicalcomputation.
Withtakingparticularnotetocontroversiesdescribedabove,wedevelopanewconsistentfullyLagrangianmesh-freeparticlemethod,namedleastsquaresmovingparticlesemi-implicit(LSMPS)method,fornumericalanalysisofincompressible?uid?owwithfreesurfaces.Asitsnamesug-gests,LSMPSmethodisbasedonthemethodofweighted“LeastSquares”procedure,andfollowsfundamentalsoftheMPSmethod[48,49]:“MovingParticle”meansmeshfreefullyLagrangianapproach,and“Semi-implicit”representsthetypeoftimeintegrationalgorithmforincompressible?owwhichiswell-knownastheprojectionmethod[33].LSMPSmethodsucceedsthenameoftheexistingMPSmethod;how-ever,allofLSMPSformulaearedifferentfromofthecurrentMPSmethod.
123
Comp.Part.Mech.(2014)1:277–305
Inthispaper,weintroduceanewmethodologyandfor-mulaeasameshfreeLagrangianapproach(particlemethod),includingarbitraryhighorderaccuratemeshfreespatialdis-cretizationschemes,consistenttimeintegrationschemes,andgeneralizedtreatmentofboundaryconditions.Additionally,somenumericaldemonstrationscomparedwiththeconven-tionalMPSsolutionsshowdrasticimprovementofaccuracyandstability.
2Preliminary2.1Notation
Inordertoexpeditethepresentation,weintroducesomepre-liminariesfornotations.Throughoutthispaper,theletterdisapositiveintegeranddenotesthespatialdimension.Ω?Rdisanonempty,open,bounded,andconnectedset.?ΩdenotestheboundaryofΩ,and?ΩisassumedtobeLipschitzcon-tinuousorsmoother,asthecasemaybe.
N0denotesthesetofnonnegativeintegers.Ifα:=(α1,α2,...,αd)∈Nd0
(1)
isand-tupleofnonnegativeintegers,wecallαamulti-index.Then,thequantity|α|:=
??dαi,(2)
i=1
isde?nedtobethelengthofα.Wealsousethefollowing
conventions:α!:=α1!...αd!,
?α∈Nd0.
(3)
Ifα,β∈Nd0,wesayβ≤αprovided1≤?i≤d,
βi≤αi.
(4)
Bythesametoken,
??α??
??????β
:=
α!
α1=β1...αd??βd.(5)
Ifx:=(x1,...,xd)T∈Rdandα∈Nd0,thenxαis
de?nedasfollows:xα:=xα1
1
···xαdd.(6)
Iff(x)isarealvaluedfunctiononanopensubsetofRd,α∈
Nd0andsmoothnessoffisassumedenough,thenDαthorderFréchetderivativeoffasfollows:
xf(x)
denotestheαDαx
f(x):=?|α|f(x)
11d.(7)
d
Comp.Part.Mech.(2014)1:277–305Ifx=(x??1,...,xd)TisanarbitrarypointofRd,then
????x??????
d2=??
xi2(8)
i=1
denotestheEuclidiannormofx,andweusuallyuse??x??as
abridgednotation.
2.2Consistency,completeness,reproducingcondition,and
thepartitionofunityInordertoadvanceconcretediscussionsonthestudyofcon-vergence,accordingtoBelytschkoetal.[12],threetermsarefrequentlyused:(i)Consistency[90]:apropertyofthedis-cretizationschemesforpartialdifferentialequations,whichisusuallyutilizedinFiniteDifferenceapproximations,(ii)Reproducingconditions[64,65]:theabilityoftheapproxi-mationtoreproducespeci?edfunctions,whichareusuallypolynomials,(iii)Completeness[37]:polynomialcomplete-nessorcompleteness,whichisusuallydiscussedintheFEM.2.2.1Consistency
Strikwerda[90]de?nestheconsistencyconditionofpartic-ularoperatorsforapproximatingderivativesasfollows:Theorem2.1(Consistency[12,90])AschemeLhu=fthatisconsistentwiththedifferentialequationLu=fisaccurate(consistent)oforderpifforanysuf?cientlysmoothfunctionv
Lv?Lhv=O(hp)
(9)
Intheabovede?nition,aparameterhdenotesthere?nementofmesh/gridandpreferstotheorderofconsistency.Obvi-ously,itisnecessaryforconvergencethatp>0,andwerequirethatp≥1fortheef?cientnumericalcalculation.Accordingtothewell-knownLax-Richtmyerequivalencetheorem[51],aconsistent?nitedifferenceschemeforawell-posedpartialdifferentialequationisconvergentifandonlyifitisstable.Consequently,anydiscretizationschememustsatisfythepthorder(p>0)consistencyconditiontoobtainconvergence.Theconsistencyisstraightforwardtoverifyandstabilityistypicallymucheasiertoshowthanconvergence;therefore,theconvergenceisusuallystudiedviatheLax-Richtmyerequivalencetheorem.
2.2.2Completeness,reproducingcondition,andthe
partitionofunity–nullitySinceascertainingwhethermeshfreeinterpolantsareconsis-tentforirregularlydistributednodesissigni?cantlymoredif-?cultthanexaminingwhether?nitedifferenceschemesforauniformstructuredgrid,thecompletenessorreproducing
279
conditionswhichplaythesamerole[12]astheconsistencyconditions1areexplored,instead.
Thereproducingconditionsorthecompletenessaretheabilityoftheapproximationtoreproducespeci?edfunctionswhichareusuallypolynomials.Onecansaythatanapproxi-mationfh(x)iscompletetoorderpifanygivenpolynomialuptoorderpcanbereproducedexactly.Ifanapproximationfh(x)isgivenfh(x)=??
by
Φi(x)f(xi),(10)
i
where{Φi(x)}1≤i≤Naretheinterpolantfunctionsand{f(xi)}1≤i≤Naregivennodalvaluesforthesetofnodes{xi}1≤i≤N,thenthecompletenessorthereproducingcondi-tionscanbede?nedasfollows:
Theorem2.2(pthordercompleteness/reproducingcondi-tion)Foramultiindexα∈Nd(x)∈Rholdsthe0:pth0≤order|α|≤polynomialp,aninterplantfunctionΦicom-pleteness/reproducing??
conditionifitsatis?es:(x?xi)αΦi(x)=δα0,(11)
i
or??
equivalently,xiαΦi(x)=xα.
(12)
i
Somemeshfreediscretizationschemesareformulatedtosatisfyalternatives,thedifferentialcompletenessorthedif-ferentialreproducingconditionswhicharerequirementthatthederivativesofapolynomial?eldbereproducedcorrectly.Theycanbede?neddirectlyfromTheorem2.2bytakingderivativesofEqs.(11)and(12),i.e.
Theorem2.3(pthorderdifferentialcompleteness/reproducingcondition)LetaninterplantfunctionΦki|β|(Rd≤)k.(For≤pmulti),anindiciesinterplantα,functionβ∈Nd(x)∈C0:Φ0≤|α|≤p,0≤i(x)holdsthepthorderdifferentialcompleteness/reproducingconditionifitsatis?es:??(x?xi)αDβ
xΦi(x)=(?1)|β|α!δαβ,(13)
i
orequivalently,??xiαDβ
xΦi(x)=
α!
i
xα?β.
(14)
ItshouldbenotedthattheTheorem2.2and2.3aresimi-lartopthorderconsistencyconditionandpthorderdifferen-tialconsistencyconditionforRKPMshapefunction[55,65],respectively.
1
pthorderpolynomialcompletenessconditionsorreproducingcondi-tionsissuf?cientconditionofpthorderconsistency.
123
280Ifα=0,Eqs.(11)and(12)become??
Φi(x)=1,
(15)
i
andifα=0,Eq.(11)does??
(x?xi)αΦi(x)=0.
(16)
i
Thesearetheoriginofthename“ThePartitionofUnity”,and“ThePartitionofNullity”.Thesepropertiesarecloselyrelatedwithnotonlymeshfreeinterpolant[65]butalsomesh-basedone.Obviously,sinceFEMinterpolantfunc-tions,calledshapefunctionssatisfytheKroneckerdeltaprop-erty,theyareconstructedbasedonthepartitionofunity–nullity.Moreover,weightingcoef?cientsoflinearcombina-tiononthe?nitedifferenceschemesarebuiltonthepartitionofunity–nulltytoobtaincertainorderofconsistency.
Interestingly,Liuetal.[65]showedthatleastsquaresbasedinterpolantsprovideachievementofpolynomialcom-pleteness/reproducingconditions,orso-calledthepartitionofunity–nullity—viceversa,correctedinterpolantformulaetoful?llthepolynomialcompleteness/reproducingcondi-tionsarequiteidenticaltotheproductionderivedfromleastsquaresprocedures.Chakravarthy[17]showedthefunda-mentalconceptofthe?nitedifferenceschemesthattodeter-mineunknownsemergedfromTaylorexpansionorpoly-nomialapproximationisgeneralizationof?nitedifferenceoperator.Also,ityieldsnormalequationswhichistheveryideaofthelinearleastsquaresapproaches.
Withfocusingattentiontoacloserelationshipofconsis-tency,completeness/reproducingconditions,andtheparti-tionofunity–nullity,andleveragingthefactthattheleastsquaresschemescontributeachievementofarbitraryhigh-orderconsistencyconditionsformeshfreespatialdiscretiza-tionschemes,wedevelopnewformulaeinthenextsection.
3Meshfreespatialdiscretizationschemes3.1Anoverviewoftheexistingmeshfreespatial
discretizationschemes
Asmentioneditintheintroduction,variousmeshfreeand/orparticlemethodshavebeensought,inordertodiscretizeadomainwithoutmesh/gridconstraints.Therearealotofdis-cretizationschemesformeshfreeinterpolantsandmeshfree?nitedifference.Oneofthemostprevalentparticlemeth-odsistheSPHmethodwhichdiscretizespartialdifferentialequationsbyaintegralrepresentationcollocationtechnique.EventhoughtheSPHmethodhasachievedalotofsuccessincomputationalmechanics,ithasnotbeenviewedasanaccuratemathematicalcomputationwhichstemsfromthe
123
Comp.Part.Mech.(2014)1:277–305
factthatitlacksarigorousconvergencetheoryaswellasasuccessivere?nementprocedure[81].
TheearlySPHinterpolantsdonotsatisfythediscretepar-titionofunityandnullity[63]exceptunderverylimitedcon-ditions.ThismeansthedefectionofSPHinterpolants0thorhigherordercompleteness/reproducingconditionsingeneralparticledistribution,whichresultsinincapabilityofrepre-sentingrigidbodymotioncorrectly,eventhoughitisGalileaninvariant(rigidbodytranslationonly).Also,theprimalSPHgradientoperatorandLaplaceoperatorgenerallyhaveanalo-gousproblem.Inordertosolvethismatter,severalcorrectionschemeshavebeenproposed,forexample,Monaghan’ssym-metrizationonderivativeapproximation[70,71],Johnson–Beisselcorrection[41],Randles–Liberskycorrection[82],Krongauz–Belytschkocorrection[12],Chen–Berauncor-rection[18–20],Bonet-Kulasegaramintegrationcorrection[16],Aluru’scollocationRKPM[1],Zhang–Batracorrection[99,100].TheycorrectSPHkernelinterpolanttosatisfycom-pleteness/reproducingconditionintheinterpolation?eld,orequivalently,tomodifySPHderivativeapproximationoper-atorsdirectlytomeetderivativecompleteness/reproducingconditioninthederivativeoftheinterpolants.Itmustbemen-tionedthatalmostall1storhigherorderconsistentcorrectedformulaeaslistedabovearebasedontheleastsquaresmeth-ods,forinstance,themostwidelyused1storderconsistentgradientapproximationoperatorfortheSPHmethoddevel-opedbyRandles–Libersky[82]isoneoftheleastsquaresbaseddiscretizations.
Leastsquaresproceduresareexcellentwithmeshfreeinterpolantsormeshfree?nitedifferenceschemes.Liuetal.[65]demonstratethatmovingleastsquares(MLS)[50]approximationisequivalenttoreproducedKernel(RK)interpolant[65]whicharecorrectedkernelapproximationbasedonthereproducingconditions.MLSRKinterpolantcanprovidearbitraryhighorderconsistencycondition,andisthecontemporaryversionoftheclassicalMLSonesincethebasicconceptofreproducingkernel,ormoregener-allyspeaking,thefundamentalsofthepartitionofunity–nullityincubatesvariousderivationofmeshfreeinterpolants[54,61,62].WithtakingparticularnoteoftheSPHkernelinterpolantinconsistency,Dilts[24,25]utilizesMLSinter-polant[50]toimprovetheaccuracyoftheSPHkernelapprox-imation,so-calledmovingleastsquaresparticlehydrody-namics(MLSPH).SinceMLScanconstructsuf?cientlysmoothedinterpolationgloballywithoptionalorderofpoly-nomialcompleteness/reproducingconditions,itiswidelyusedinmeshfree/particlemethods,suchasvariousGalerkinmeshfreeapproachlistedinIntroduction(e.g.DEM,EFGM,RKPM,etc.).
SincetheearlyMPSgradientoperatorandLaplaceoper-ator[49]generallylack1storhigherorderdifferentialcom-pleteness/reproducingconditionexceptunderverylimitedconditions(e.g.regularparticledistributionisassumed),
Comp.Part.Mech.(2014)1:277–305variedcorrectiontechniqueshavebeenproposedinordertoenhancetheaccuracyoftheMPSmethod.Forinstance,Khayyer–Gotohgradientoperatoranti-symmetrization[42],Khayyer–Gotohdivergenceoperatorcorrection[43],Khayyer–GotohLaplaceoperatorcorrection[44],Khayyer–Gotohgradientoperatorcorrection[45],andSuzukigradi-entoperatorcorrection[39,91]areproposed.OnlySuzukimethodbasedonweightedleastsquarestechniquecanachieve1storderconsistencyforgradientoperator;however,othersdonotholddifferentialcompleteness/reproducingconditionsingeneralcase.Inotherwords,theyarefarfromsatisfactionofhighorderaccuracy.Ofcourse,sim-ilartoadoptingleastsquaresapproachintoSPHmethod,leastsquaresbasedformulaecanbeintroducedtotheMPSmethod.Kohetal.[46]utilizetwodimensionalsecondordergeneralized?nitedifferenceschemes[57,59]basedonweightedleastsquarestotheMPSmethod.Tamaietal.[93]formulategeneralized?nitedifferenceschemesbasedontheweightedleastsquaresfortheMPSmethod,whichprovidesarbitraryhighorderconsistencyandcanbeappliedforarbitrarydimension.
Consistentleastsquaresbasedspatialdiscretization?nitedifferenceschemes[46,57,59,91,93]resolvetherackofpolynomialcompleteness/reproducingconditionsontheMPSmethodsothathighorderconsistencyconditionsareful?lledandabsoluteenhancementofaccuracywouldbegiven;however,utilizingleastsquaresbasedschemeraiseanewproblem—normalequationsderivedfromtheleastsquaresprocedureswillbeill-conditionedproblemswhichresultsineitherseriousdeteriorationinnumericalaccuracyandstabilityorterminationofthecomputation.Selectingneighborhoodstenciles[59]tocircumventthisill-conditionedproblemsisproposed;however,thistechniquecannotbethefundamentalsolutionsincetheconditionnum-bersofcoef?cientmatricesderivedfromtheleastsquares,so-calledthe“momentmatrices”,arenotindependentfromcharacteristiclengthofcalculationpointsspacing.
Inordertoovercometheweaknessoftheleastsquaresbasedspatialdiscretizationschemesthatnormalequationsshallbeill-conditionedandtoobtainhighorderconsistencyconditionsfromthem,wereformulatetheleastsquaresbasedschemesinthenextsection.
3.2Anewmeshfreespatialdiscretizationschemesbasedon
theweightedleastsquaresprocedure3.2.1Stone–WeierstrasstheoremoflocallycompactversionLetf:Rd→Rbeasuf?cientlysmoothfunction2thatisde?nedonasimplyconnectedopensetΩ?Rd.Accord-ingtotheStone-Weirestrasstheoremoflocallycompactver-2
Atleast,f(x)∈C0(Ω)
¯.281
sion[84,88,89],fora?xedpointx
¯∈Ω¯,oneshouldalwaysbeabletoapproximatef(x)byapolynomialserieslocally.Thus,wecande?nealocalfunction
??
fl(x,x
¯):=f(x),?x∈B(x
¯),0,?x∈B(x¯),(17)where
B(x
¯):=??x????????x?x¯??<re,x∈Rd
??
.(18)
Ifthefunctionf(x)issmoothenoughasassumed,there
existsalocaloperatorLx¯:C0(B(x¯))→Cp(B(x¯))s.t.fl(x,x¯)≈Lx¯f(x):=??pT(x)a(x¯),(19)
where
??p(x):=??xα??????0≤|α|≤p??
,(20)
ispthordercompletepolynomialbasis,anda(x
¯)iscoef-?cientvector.UtilizingTaylorexpansionofapproximated
polynomialfunctionaroundxiwithnearbypointxj∈B(x
¯)yields
??p??1??
xj?xi αα??h|α|=1
Dxf(xi)?{f(xj)?f(xi)}=Rp+1
ij,(21)
whereRp+1
ij
:=Lx¯f(x)?fl
(x),
(22)
istheresidualoflocalpolynomialapproximation.Equation(21)isawell-knownformofTaylorexpansion,andweuseitseveraltimesinthispaperwithoutspecialnoteagain.3.2.2Weightfunction
Weusetheweightedleastsquaresproceduresfornewspatialdiscretizationschemesformulae,thentheweight(window)functionwhichsatisfythefollowingconditionsisde?ned.
w(x,re)∈Ck
(Rd),1≤k,(23)?x∈Rd,
0≤w(x,re)≤Cw<∞,
(24)??x??≥re??w(x,re)=0,
(25)????
x??<??y??≤re???w(x,re)>w(y,re),
(26)w(x,re)dx=C=(Const.),(Typically,C=1),
(27)
Rd
wherereisthedilationparameterandtheradiusofcom-pactsupportoftheweightfunction.IntheLSMPSmethod,
singularweightfunctionlike
123
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 一份优秀的精益生产培训资料Word
- 幼儿园员工手册30
- 黄庭坚清平乐教学课件Word[1]1
- 移动互联网农产品电商项目最新最权威解决方案Word
- 重载列车制动系统与普通货车制动系统比较Word
- 销售成本结转Word
- 往后一步,是对爱的尊重
- 培训师的百宝箱课堂游戏实战经典(44页)Word
- 那是在艰苦的60年代Word
- 如果你老公在部队
- 打卡考勤制度怎么在迈锐思C1考勤管理实现Word
- 北京版新版一年级下册第四单元单元备课
- 第四章 食品微生物检验样品的制备Word
- 适合幼儿园的消防安全预案样本
- 第十二章 巴金Word
- 人工湿地处理污水节能技术Word
- 阀门知识简介(下)Word
- 战略规划流程与方法-麦肯锡Word
- 一份优秀的精益生产培训资料Word
- 培训师的百宝箱课堂游戏实战经典(44页)Word
- 车辆交易手续流程、费用Word
- 政治经济学 第十章 垄断资本及其发展Word
- 寂寞洒在无人的小巷,洒进我的窗子
- 镇坪县洪石幼儿园2017游戏点亮快乐童年学前教育宣传月活动方案
- 阀门知识简介(下)Word
- 证券投资分析Word
- 北京版新版一年级下册第四单元20 小溪笑了教案
- PN结Word
- 中央昆士兰大学医学与应用科学学院入读优势
- 20150209金港之都第一阶段报告【终稿】Word
网友关注视频
- 沪教版八年级下册数学练习册一次函数复习题B组(P11)
- 河南省名校课堂七年级下册英语第一课(2020年2月10日)
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
- 飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
- 外研版英语三起6年级下册(14版)Module3 Unit2
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 二年级下册数学第二课
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 苏教版二年级下册数学《认识东、南、西、北》
- 冀教版英语三年级下册第二课
- 二年级下册数学第一课
- 第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 3月2日小学二年级数学下册(数一数)
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 冀教版英语五年级下册第二课课程解读
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 三年级英语单词记忆下册(沪教版)第一二单元复习
- 北师大版数学四年级下册第三单元第四节街心广场
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
- 冀教版小学数学二年级下册1
- 小学英语单词
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理