教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> > 物理> plasmonic nanoparticles and metasurfaces

plasmonic nanoparticles and metasurfaces

上传者:练继建
|
上传时间:2015-05-07
|
次下载

plasmonic nanoparticles and metasurfaces

内容需要下载文档才能查看 内容需要下载文档才能查看

Plasmonic nanoparticles and metasurfaces to realize Fano spectra atultraviolet wavelengths

Christos Argyropoulos, Francesco Monticone, Giuseppe D'Aguanno, and Andrea Alù

Citation: Appl. Phys. Lett. 103, 143113 (2013); doi: 10.1063/1.4823575

View online: http://wendang.chazidian.com/10.1063/1.4823575

View Table of Contents: http://wendang.chazidian.com/resource/1/APPLAB/v103/i14

Published by the AIP Publishing LLC.

Additional information on Appl. Phys. Lett.

Journal Homepage: http://wendang.chazidian.com/

Journal Information: http://wendang.chazidian.com/about/about_the_journal

Top downloads: http://wendang.chazidian.com/features/most_downloaded

Information for Authors: http://wendang.chazidian.com/authors

APPLIEDPHYSICSLETTERS103,143113

内容需要下载文档才能查看

(2013)

PlasmonicnanoparticlesandmetasurfacestorealizeFanospectraatultravioletwavelengths

??1,a)ChristosArgyropoulos,1FrancescoMonticone,1GiuseppeD’Aguanno,2andAndreaAlu

DepartmentofElectricalandComputerEngineering,TheUniversityofTexasatAustin,Austin,

Texas78712,USA2

AEgisTechnologies,NanogenesisDivision,410JanDavisDr.,Huntsville,Alabama35806,USA

1

(Received3May2013;accepted13September2013;publishedonline1October2013)

WediscussthepossibilitytorealizesharpFanoscatteringsignaturesintheultraviolet(UV)range,basedondipolarscatteringofnanoparticles.Atthesefrequencies,materiallossesusuallydonotallowsharpresonanteffects,hinderingplasmonicapplicationsbasedonhigher-ordermultipolarmodes,likeconventionalFanoresonances.Weproposetoexcitedegeneratescatteringstatessupportedbycore-shellnanoparticlesmadeofasapphirecoreandanaluminumshell.Wepredictenhanced,highlycon?ned?elds,supportingsharpfar-?eldscatteringsignaturesfromsinglenanoparticlesandplanararraysofthem.TheseresultsmayleadtothedesignofUV

C2013AIPPublishingLLC.?lters,photodetectors,sensors,andenergy-harvestingdevices.V

[http://wendang.chazidian.com/10.1063/1.4823575]

Signi?cantresearcheffortshavebeenrecentlydedi-catedtoenhancingandengineeringtheinteractionoflightandmatteratsubwavelengthdimensions.Thisinteresthasfosteredthegrowthoftherecentresearch?eldofplas-monics,demonstratinggreatpotentialtowardscombiningtheminiaturizeddimensionsofsemiconductorelectronictechnologywiththelargedataratesandenhancedband-widthperformancesachievedbyphotonicdevices.1Excitingapplicationshavebeenenvisionedbasedonthestrongcon?nementoflightindeeplysubwavelengthdimen-sions.2Oneofthemostinterestingeffectsenabledbyplas-monicsistheultra-sharpFanoresonantscatteringresponsesupportedbymetallicnanostructuresatopticalandinfrared(IR)frequencies.3–7Theseasymmetricresonancesareusu-allybasedontheinteractionbetweendipolarbrightmodeswithhigher-order,morenarrowbanddarkmodes.3Theircharacteristicshaveshowngreatbene?tsinvariousscenar-ios,inparticular,foroptical?ltering,sensing,lasing,andslow-lightapplications.

Theinvolvementofhigher-ordermodes(quadrupoles,octupoles,etc.)leadstoenhancedstoredenergyintheplas-monicdevice,whichtranslatesintohighersensitivitytotheOhmiclossestypicalofmetalsatopticalfrequencies.Furthermore,conventionalplasmonicFanoresonances,aris-ingfromtheinterferencebetweentwodifferentscatteringorders,canbeusuallyobservedonlyoveraportionoftheangularspectrumduetointerference.Recently,itwaspro-posedthatsimilarlysharpFano-likeresonantsignaturescanbeobtainedbytheinteractionofpurelydipolarmodes.8–13Inourrecentworks,weshowedthatthispossibilitymaybecontrolledbycloselycouplinginthefrequencyspectrumcloakingandresonantstatesofasymmetricandisotropicnanoparticle.Inthiscase,adipole-dipoleFano-likeresponsecanbeobservedforallanglesofincidenceandinthetotalscatteringcrosssection(SCS),evenforasinglenanoparticle.Moreover,enhanced?eldsareobtainedatthissharpdipolar

a)

Authortowhomcorrespondenceshouldbeaddressed.Electronicmail:alu@mail.utexas.edu

resonance,stronglycon?nedatthecoreofthenanoparticle,allacrosstheFanospectrum.Dependingonhowthesestatesareexcited,theseresonantphenomenamaybemademoreorlesssensitivetothebackgroundmediumandthecoremate-rial,12providinganunprecedented?exibilitytorealizedif-ferentfunctionalities.Aplethoraofapplicationshasbeenenvisionedfromtheseplasmonicstructures,suchasrobustsensors,11nano-biomarkers12andef?cientnonlinearall-opticalswitches.10

Untilnow,themostcommonmaterialsconsideredforplasmonicapplicationshavebeensilver,copper,andgold,becausetheycansustainef?cientexcitationofbothpropa-gatingandlocalizedsurfaceplasmonsatopticalfrequencies.However,theysufferfrominherentdisadvantages,suchasincreasedlosses,highcost,andlowabundanceonEarth,13whichsetseverelimitationstowardsthefuturecommercialapplicationsandmass-productionofplasmonicdevicesbasedonthesematerials.Alternatively,itwasdemonstratedthatef?cientplasmonexcitationcombinedwithrelativelylowlossescanalsobesustainedatmid-infraredfrequenciesusingdopedsemiconductormaterials.12,14,15

Comparatively,lessresearchattentionhasbeendedi-catedtoplasmoniceffectsoccurringatveryhighfrequen-cies,suchasintheultraviolet(UV)spectrum.Thisismainlybecausetheaforementionednoblemetalsandsemiconduc-torshavelowerplasmafrequenciescomparedtotheUVfre-quencyrangeand,asaresult,theyaremostlytransparentanddonotexhibitplasmonicbehaviorinsuchregimes.Aluminum(Al)istheidealmaterialtosustainsurfaceplas-monsatUVwavelengths,duetoitshighplasmafrequency($15eVork¼85nm).Inaddition,AlisthethirdmostabundantelementonEarth,whichmakesitcheapandidealformass-production.InterestinganddiverseapplicationshavebeenrecentlyenvisionedatUVfrequenciesbasedonAlplasmonicdevices,suchasboostednonlinearopera-tions,16ef?cientsurface-enhancedRamanscattering(SERS)substrates,17,18plasmonicnanoantennas,19enhanced?uores-cence,20,21extraordinaryopticaltransmissiongratings,22,23andenergyharvestingdevices.24

C2013AIPPublishingLLCV

0003-6951/2013/103(14)/143113/5/$30.00103,143113-1

143113-2Argyropoulosetal.Appl.Phys.Lett.103,143113(2013)

LessattentionhasbeenpaidtoplasmonicstructuresexhibitingFanoresonancesatUVfrequencies,whichmaybeused,forinstance,assharpsolarblindstoisolateportionsoftheUVfrequencyspectrum,whiletransmittingopticalradiation,orassensitivenanosensorsandphotodetectors.ThereasonforthecomparativelylessamountofresearchonthistopicisthelargerlossfactorofAlintheUVcomparedtoothernoblemetalsatlowerfrequencies,whichhindershigher-orderresonancesonwhichconventionalFanoresponsesarebased.Inthisletter,weexplorethepossibilitytoinducedipole-dipoleplasmonicFanoresonancesatUVfrequenciessupportedbyproperlyengineeredcore-shellsub-wavelengthnanoparticles,similartotheconceptproposedinRef.10foroperationinthevisible.Theproposedgeometry,shownintheinsetofFig.1(b),iscomposedofasapphire(Al2O3)dielectriccorewithradiusacsurroundedbyametal-licshellmadeofaluminumwithradiusa.AccordingtothetheorypresentedinRefs.10–12forthick,subwavelengthplasmonicshells,theelectricdipolarresponseofthisnano-particlecanpresentanultrasharpdegenerateresonantstatewheneAl¼ÀeAl2O3=2.Underthiscondition,thefrequencydispersionofacloaking(dark)statemergeswiththeoneofaresonant(bright)state,producinganasymmetricFano-typeresonanceinthescatteringspectrum.Sincethetwointerfer-ingstatesareassociatedwiththesamedipolarscatteringmode,weareabletorealizeanasymmetric,sharpFano-resonantscatteringsignaturewithasingle,isotropic,andcenter-symmetricsubwavelengthscatterer.

Thescatteringperformanceoftheproposednanoparticleisquantitativelyanalyzedusingthewell-establishedMiescatteringtheory.25RealisticlossesareconsideredforbothAlandAl2O3,theirpermittivityvaluesareobtainedfromex-perimentaldata26andthenanoparticleisembeddedinfreespace.ThenormalizedSCSofasubwavelengthcore-shellnanospherewithinnerlayerradiusac¼3nmandouterra-diusa¼8:5nmiscomputedandplottedinFig.1(a).Interestingly,thenormalizedSCScangofromÀ13dB[pointIinFig.1(a)]toalmostÀ30dB[pointIIinFig.1(a)]inanarrowwavelengthrange.NotethatthissharpFanores-onantlinewidthisobtainedatdeep-UVfrequencies,wheremostmetalsareactuallysemi-transparent,whiledielectricnanoparticlesdonotgenerallyshowpeculiarscatteringsig-naturesbecausedielectricmaterialsareopaqueinthiswavelengthrange,duetotheirlargelyincreasedabsorptionaroundtheinterbandtransitions.Realisticlossesofplas-monicanddielectricmaterialshavebeenfullytakenintoaccountinourcalculations,accuratelyre?ectingtheresponseofarealisticstructureimplementablewithincurrentnanofabricationtechniques.

TheinsetofFig.1(a)showstwosnapshotsintimeoftheEx?eldcomponentatthehighscatteringpointI(resonance)andlowscatteringpointII(cloaking).Enhancedandstronglycon?ned?eldsareobtainedinsidethecompositenanopar-ticleforbothresonantandcloakingstates.Incontrast,out-sidethecore-shellparticle,the?eldsaredramaticallydifferentacrossthelinewidthoftheUVFanoresonance.Intheresonantstate(pointI),largescatteringef?ciencyisobserved,similartoordinarydipolarplasmonicresonancessupportedbysilverorgoldnanoparticlesatopticalfrequen-cies.2Conversely,inthecloakingstate(pointII),theimping-ing?eldstravelaroundthescattereralmostunperturbed,similartoscatteringcancellationdesignsproposedinRefs.27and28.Itisinterestingthatsuchstrongvariationofthe?elddistributioncanbeachievedoveranarrowfrequencyrange,whichindicatesastrongandpeculiarinteractionofthesubwavelengthnanoparticlewithUVradiation.InFig.1(b)across-sectionofthe?eldenhancementðjEj=jEincjÞisplottedalongthex-axiscrossingthecenterofthenanopar-ticleattheresonant(pointI/redline)andcloaking(pointII/blueline)wavelengths.Enhanced?eldsareobtainedinsidetheplasmonicnanoparticleacrosstheentireFanospectrumshowninFig.1(a)andarestronglycon?nedattheinterfacebetweentheAlshellandthesapphirecore.Inthiscase,astronglylocalizedplasmonisformed,andthehigher?eldenhancementatthemetallicshellsideobservedinthe?gurecanbeexplainedbyapplyingtheboundaryconditionontheradialcomponentoftheelectricdisplacementvectoratthisinterface.Evenatthecloakingfrequency,signi?cantlyenhanced?eldsareobservedinthecore,whichmaybeofin-teresttoboostnonlineareffectsatUVfrequencies,asdem-onstratedforopticalantennas29,30andepsilon-near-zeroplasmonicwaveguides31atopticalfrequencies.Thesefea-turesmayleadtothedesignoflow-intensitymemories,switches,andsensitivetunablesensorsatUVwavelengths.

Next,wechecktheeffectofdifferentdielectricback-groundmaterialsinthescatteringresponseofthe

内容需要下载文档才能查看

proposed

FIG.1.(a)Normalizedscatteringcrosssectionofthecompositenanoparticlewithgeometryshownintheinsetofpanel(b).Theradiusofthecoreisac¼3nmandtheouterlayerradiusisa¼8:5nm.Theinsetof(a)showssnapshotsintimeoftheEx?eldcomponentattheresonanceandcloakingwavelengths,denotedbyIandII,respectively.(b)Fieldenhancementacrossthecompositenanoparticleasafunctionofthenormalizedtransversedirectionðx=aÞattheres-onantI(redline)andcloakingII(blueline)wavelengths.

143113-3Argyropoulosetal.Appl.Phys.Lett.103,143113(2013)

FIG.2.SensitivityoftheUVFanoresonancetothepermittivityebofthebackgroundmedium.ThenanoparticlehasthesamedimensionsasinFig.1.Thenarrowresonance,cloaking,andbroaddipolarresonancewavelengthsaredenotedbyI,II,andIII,

内容需要下载文档才能查看

respectively.

plasmonicnanoparticle.TheUVFanodispersionisplottedinFig.2asafunctionofthesurroundingmediumpermittiv-ity.ItisevidentthattheasymmetricFanoresponseisonlyslightlyaffectedbyvariationsofthebackgroundpermittiv-ity,whichisconsistentwiththeresultspresentedinRef.12.Thephysicalreasonforthisbehavioristhatthecloaking-resonancepairsupportingthedipole-dipoleUVFanoreso-nanceissustainedbythelocalizedplasmonresidingattheinnersphericalinterfacebetweentheplasmonic(Al)shellanddielectric(Al2O3)core.Hence,thepeak(pointI)anddip(pointII)inthescatteringresponsearealmostinsensitivetothebackgroundenvironment.Onthecontrary,thebroaddipolarresonanceatlowerfrequencies(pointIIIinFig.2)isstronglyaffectedbythebackgroundmaterial.12Asaresult,thenanoparticlescanbeembeddedinanyhostmediumwith-outsigni?cantlyaffectingthemainfeaturesandrobustnessofthis“built-in”UVFanoresponse,whichmayleadto,e.g.,UVtaggingapplications.

Inarealisticscenario,theidealcore-shellgeometrythatwehavedescribedwouldbemodi?eduponexposuretoambi-entconditions,sincethealuminumouterlayermayoxidizeandathinnativeoxideAl2O3layerwouldformaroundtheAlinterface.32,33Here,weexplorethisissueandquantitativelyassesstheperformanceofthemodi?edgeometry,consideringanadditionalthinlayer(1:5nm)ofAl2O3aroundtheplas-monicouterlayerofthecore-shellgeometryofFig.1,as

shownintheinsetofFig.3(b).Thenanoparticlehasnowthreelayersandthedimensionsarechosentobe:coreradiusac1¼3nm,middleplasmoniclayerradiusac2¼8:5nm(samedimensionsasinFig.1forafaircomparison),andouterlayerradiusa¼10nm.ThecalculatednormalizedSCSforthismultilayerednanoparticleisshowninFig.3(a),demon-stratingsimilarlysharpfeaturesintheUVrange.Asexpected,thescatteringexcursionisslightlysmaller,andtheresonancebandwidthabitbroadercomparedtothepreviouscase[seeFig.1(a)],duemainlytotheOhmiclossesofthesapphireouterlayer,whichdissipatespartoftheimpingingUVradia-tion,hencereducingtheef?ciencyofplasmonexcitation.However,afairlysharpFanoresponseisstillpreserved.Alsointhiscaseweassumedafree-spacebackground,butweexpecttheUVFanoresonancetobealmosttotallyunaffectedbyachangeinhostmedium,asshowninFig.2.

The?eldsarestillcon?nedinsidethenanoparticleandstronglyenhancedacrosstheFanoresonancelinewidth[Fig.3(b)]whencomparedtotheincidentradiation,asshowninthe?elddistributionsintheinsetofFig.3(a)atthewave-lengthsoftheresonant(pointI)andcloakingstates(pointII).The?eldenhancementisslightlylowercomparedtothetwo-layercaseshowninFig.1(b),duetotheadditionalthinouterlayerofAl2O3,whichstronglyaffectsthesurfaceplas-monlocalizedattheoutersphericalinterface,asevidentbyacomparisonofthe?elddistributionsinFigs.1and3.However,highenhancementoftheelectric?eldisstillobtained,especiallyattheinterfacebetweentheAlshellandtheAl2O3core,andthe?eldlevelinsidethecoreisalmostthesameasbefore.Notethattheabruptdropin?eldenhancementintheoutersapphirelayerismainlyduetothehighvalueofpermittivityofAl2O3inthisfrequencyregion26andthecontinuityofthenormalcomponentoftheelectricdisplacementvector.TheseresultsdemonstratethatnarrowdipolarFanoresonantfeaturesandhighlyenhanced?eldsarepreservedevenafteroxidizationoftheAlshells,whichmaketheproposedcompositeplasmonicstructureappealingforpracticalrealizationsandrealisticapplications.

Thescatteringsignalobtainedfromanindividualplas-monicnanoparticleissmallinthefar-?eld,duetoitsextremelysubwavelengthdimensions,andforpracticalpur-posescollectionsofsuchparticleswouldbeofmoreinteresttoformmorecomplexnanodevices.Forthisreason,

内容需要下载文档才能查看

we

FIG.3.(a)Normalizedscatteringcrosssectionofthethree-layercompositenanoparticlewithgeometryshownintheinsetofpanel(b).Theradiusofthecoreisac1¼3nm,themiddlelayerradiusac2¼8:5nm,andtheouterlayerradiusa¼10nm.Theinsetof(a)showstwosnapshotsintimeoftheEx?eldcompo-nentattheresonanceandcloakingwavelengths,denotedbyIandII,respectively.(b)Fieldenhancementacrossthethree-layercompositenanoparticleasafunctionofthenormalizedtransversedirectionðx=aÞattheresonantI(redline)andcloakingII(blueline)wavelengths.

143113-4Argyropoulosetal.Appl.Phys.Lett.103,143113(2013)

FIG.4.(a)Anin?niteperiodicarrayofcompositenanoparticleswithgeometry,parametersanddimensionsasinFig.1.Theperiodicityischosentobedx¼dy¼2:5a¼21:25nm.Amplitudeof(b)re?ection,(c)transmission,and(d)absorptioncoef?cientsofthemeta-surfaceshowninpanel(a).

considernextanarrayofcompositenanoparticles,inwhichtheeffectsofinterferencebetweenradiated?eldsmaybetai-loredatwill.InFig.4(a),weshowaplanararrayofthepro-posedplasmonicnanoparticles,whicheffectivelyrealizesaquasi-homogeneousplanar“metasurface.”29,30Thenanopar-ticleshaveparameters,geometryanddimensionsasinFig.1andarearrangedinasquarelatticewithperiodicitydx¼dy¼2:5a,whereaistheouterradiusofeachnanopar-ticle.Transmissionandre?ectioncoef?cientsofthisplanar-izedin?nitearrayarecalculatedwithafastconvergingsummation,34whichtakesintoaccountthefulldynamiccou-plingamongnanoparticles.Theamplitudeoftheresultedre?ectionandtransmissioncoef?cientsareplottedinFigs.4(b)and4(c),respectively.Theproposed“UV-metasurface”providessharpFanotransmissionandre?ectionfeaturesatdeep-UVfrequencies,similartothescatteringresponseofthesinglenanoparticleshowninFig.1(a).Itisinterestingthatthetransmissionsignatureresembleselectromagnetic-induced-transparency(EIT)scatteringpatterns,35,36withtherelevantdifferencesthatitisbasedhereonpurelydipolarresonances,providingmorerobustnesstoloss,anditarisesatdeep-UVfrequencies.Wehaveveri?edthatinthelimitofweakcoupling,theFanoresonanceofthe?nitearraytendstotheoneofanisolatednanoparticle,aslongastheinterpar-ticledistanceissubwavelength,andgratingeffectsarenotpresent.

Finally,theabsorptionoftheproposedUVnanodeviceiscalculatedfromthetransmissionandre?ectioncoef?cientsusingpowerconservation,anditisplottedinFig.4(d).Almost50%ofthetotalabsorptionisinterestinglyachievedinadeep-UVfrequencywindow.Thisbehaviorisidealtowardstherealizationofdeep-UVphotodetectorsandsolarblinds,forwhichweneedtoef?cientlyisolatetheUVfre-quenciesfromtheimpingingsolarradiationspectrum.Similarperformancewillbeobtainedincasethemetasurfaceisembeddedindifferentbackgroundmedia,asdemonstratedinFig.2.NumerousotherapplicationsmaybeenvisionedbasedontheproposedUV-metasurfaces,suchasnon-line-

of-sightcommunications37withsuchshort-wavelengthradi-ation,andef?cientUVoptical?ltersindependentofback-groundvariationsmaybedesignedbasedontheproposedconcepts.

Toconclude,wehaveexploredthedesignandperform-anceofacore-shellplasmonicnanoparticlethatstronglyinteractswiththeimpingingradiationatdeep-UVfrequen-cies,allowingstrongmanipulationofthescatteringresponse.DipolarUVFanoresonanceshavebeendemonstratedbasedonasinglesubwavelengthcompositenanoparticleconsistingofanaluminumshellsurroundingasapphirecore.RealisticOhmiclossesandthenaturaloxidizationofAlhavebeentakenintofullaccountinourcalculations.ThedescribedUVscatteringresponsemaybetunedtoalargedegreebyalter-ingthesizeandshapeofthestructure,providingadditional?exibilityinthedesignoftheproposedUVoptical?lters.ThecollectiveresponseofaplanarmetasurfacecomposedofanarrayoftheproposedplasmonicnanoparticleshasbeenshowntoexhibitsharpUVFanoandEITfeaturesinthere?ectionandtransmissioncoef?cients,whichmayleadtotherealizationofintegratedplanarizedUVnanodeviceswith?lteringeffects.Moreover,themetasurfacehasbeenfoundtoachievealmost50%ofabsorptioninadeep-UVfrequencywindow,aninterestingfeature,inparticular,forenergyhar-vestinganddefenseapplications.TheproposedFanoscatter-ingfeatureshavebeenfoundtobeveryrobusttodifferentdielectricbackgroundmedia.Inconclusion,webelievethatour?ndingsmayextendthereachofplasmonicFanoresonancesandotheranomalouseffectstodeep-UVwave-lengths.OurresultsprovethataluminumisanidealmaterialtosustainlocalizedplasmonsatUVfrequenciesandmayleadtotherealizationofef?cientUVplasmonicdevicesandnanocircuits.

ThisworkhasbeenpartiallysupportedbytheAROSTTRproject“DynamicallyTunableMetamaterials,”AFOSRwiththeYIPAwardNo.FA9550-11-1-0009andtheONRMURIGrantNo.

内容需要下载文档才能查看

N00014-10-1-0942.

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

2017陕西公务员考试申论真题
2016陕西公务员面试模拟题:“互联网+”时代的到来需要以诚为先
2016陕西公务员考试面试热点模拟题:提速降费
历年陕西公务员考试行测真题特点及命题趋势分析
2016陕西公务员面试模拟题: 高学历犯罪
2016陕西公务员面试热点模拟题:假奶粉如何消除
2016陕西公务员面试模拟题:“疑罪从无”
2018陕西省考申论每周一练:品牌建设
2016陕西公务员面试热点模拟题:各行各业的“翻船体”
2018陕西公务员考试面试热点模拟题:劝阻吸烟引发老人离世
2018陕西公务员面试模拟题:有人质疑选票造假如何处理
2016陕西公务员面试模拟题:号贩子的猖獗是谁之过
2016陕西公务员面试模拟题:“女性专用公交”是与非
2016陕西公务员面试模拟题:城管执法的五条建议
2016陕西公务员面试模拟题:“阿里”打假
2017陕西公务员考试行测解读:难度明显加大
2016陕西公务员面试模拟题:女性专用公交车,你怎么看?
2018陕西公务员考试行测演练厅之生活常识模拟题
2016陕西公务员面试模拟题:改变“重涨不重跌”现象 切实保障农民利益
2018陕西省考申论每周一练答案:品牌建设
2016陕西公务员面试模拟题:玩手机算缺课
2016陕西公务员面试热点模拟题:如何劝说商贩
2016陕西公务员面试模拟题:一号难求
2016陕西公务员面试热点模拟题:教师资格打破“终身制”
2016陕西公务员面试热点模拟题:全面放开二孩制度
2016陕西公务员面试模拟题:保护好祖国花朵
2016陕西公务员面试模拟题:论规矩
2016陕西公务员面试模拟题:飞机“选座收费”惹争议
2016陕西公务员面试模拟题:如何看待网络谣言
2016陕西公务员面试模拟题:奇葩证明

网友关注视频

苏科版数学 八年级下册 第八章第二节 可能性的大小
第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
冀教版英语五年级下册第二课课程解读
外研版八年级英语下学期 Module3
冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
沪教版牛津小学英语(深圳用)五年级下册 Unit 1
沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
冀教版小学英语五年级下册lesson2教学视频(2)
苏科版数学八年级下册9.2《中心对称和中心对称图形》
3月2日小学二年级数学下册(数一数)
沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
七年级下册外研版英语M8U2reading
冀教版小学数学二年级下册第二单元《余数和除数的关系》
二年级下册数学第一课
六年级英语下册上海牛津版教材讲解 U1单词
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
外研版英语三起6年级下册(14版)Module3 Unit1
冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
冀教版英语三年级下册第二课
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
七年级英语下册 上海牛津版 Unit9
冀教版英语四年级下册第二课