plasmonic nanoparticles and metasurfaces
上传者:练继建|上传时间:2015-05-07|密次下载
plasmonic nanoparticles and metasurfaces
内容需要下载文档才能查看 内容需要下载文档才能查看
Plasmonic nanoparticles and metasurfaces to realize Fano spectra atultraviolet wavelengths
Christos Argyropoulos, Francesco Monticone, Giuseppe D'Aguanno, and Andrea Alù
Citation: Appl. Phys. Lett. 103, 143113 (2013); doi: 10.1063/1.4823575
View online: http://wendang.chazidian.com/10.1063/1.4823575
View Table of Contents: http://wendang.chazidian.com/resource/1/APPLAB/v103/i14
Published by the AIP Publishing LLC.
Additional information on Appl. Phys. Lett.
Journal Homepage: http://wendang.chazidian.com/
Journal Information: http://wendang.chazidian.com/about/about_the_journal
Top downloads: http://wendang.chazidian.com/features/most_downloaded
Information for Authors: http://wendang.chazidian.com/authors
APPLIEDPHYSICSLETTERS103,143113
内容需要下载文档才能查看(2013)
PlasmonicnanoparticlesandmetasurfacestorealizeFanospectraatultravioletwavelengths
??1,a)ChristosArgyropoulos,1FrancescoMonticone,1GiuseppeD’Aguanno,2andAndreaAlu
DepartmentofElectricalandComputerEngineering,TheUniversityofTexasatAustin,Austin,
Texas78712,USA2
AEgisTechnologies,NanogenesisDivision,410JanDavisDr.,Huntsville,Alabama35806,USA
1
(Received3May2013;accepted13September2013;publishedonline1October2013)
WediscussthepossibilitytorealizesharpFanoscatteringsignaturesintheultraviolet(UV)range,basedondipolarscatteringofnanoparticles.Atthesefrequencies,materiallossesusuallydonotallowsharpresonanteffects,hinderingplasmonicapplicationsbasedonhigher-ordermultipolarmodes,likeconventionalFanoresonances.Weproposetoexcitedegeneratescatteringstatessupportedbycore-shellnanoparticlesmadeofasapphirecoreandanaluminumshell.Wepredictenhanced,highlycon?ned?elds,supportingsharpfar-?eldscatteringsignaturesfromsinglenanoparticlesandplanararraysofthem.TheseresultsmayleadtothedesignofUV
C2013AIPPublishingLLC.?lters,photodetectors,sensors,andenergy-harvestingdevices.V
[http://wendang.chazidian.com/10.1063/1.4823575]
Signi?cantresearcheffortshavebeenrecentlydedi-catedtoenhancingandengineeringtheinteractionoflightandmatteratsubwavelengthdimensions.Thisinteresthasfosteredthegrowthoftherecentresearch?eldofplas-monics,demonstratinggreatpotentialtowardscombiningtheminiaturizeddimensionsofsemiconductorelectronictechnologywiththelargedataratesandenhancedband-widthperformancesachievedbyphotonicdevices.1Excitingapplicationshavebeenenvisionedbasedonthestrongcon?nementoflightindeeplysubwavelengthdimen-sions.2Oneofthemostinterestingeffectsenabledbyplas-monicsistheultra-sharpFanoresonantscatteringresponsesupportedbymetallicnanostructuresatopticalandinfrared(IR)frequencies.3–7Theseasymmetricresonancesareusu-allybasedontheinteractionbetweendipolarbrightmodeswithhigher-order,morenarrowbanddarkmodes.3Theircharacteristicshaveshowngreatbene?tsinvariousscenar-ios,inparticular,foroptical?ltering,sensing,lasing,andslow-lightapplications.
Theinvolvementofhigher-ordermodes(quadrupoles,octupoles,etc.)leadstoenhancedstoredenergyintheplas-monicdevice,whichtranslatesintohighersensitivitytotheOhmiclossestypicalofmetalsatopticalfrequencies.Furthermore,conventionalplasmonicFanoresonances,aris-ingfromtheinterferencebetweentwodifferentscatteringorders,canbeusuallyobservedonlyoveraportionoftheangularspectrumduetointerference.Recently,itwaspro-posedthatsimilarlysharpFano-likeresonantsignaturescanbeobtainedbytheinteractionofpurelydipolarmodes.8–13Inourrecentworks,weshowedthatthispossibilitymaybecontrolledbycloselycouplinginthefrequencyspectrumcloakingandresonantstatesofasymmetricandisotropicnanoparticle.Inthiscase,adipole-dipoleFano-likeresponsecanbeobservedforallanglesofincidenceandinthetotalscatteringcrosssection(SCS),evenforasinglenanoparticle.Moreover,enhanced?eldsareobtainedatthissharpdipolar
a)
Authortowhomcorrespondenceshouldbeaddressed.Electronicmail:alu@mail.utexas.edu
resonance,stronglycon?nedatthecoreofthenanoparticle,allacrosstheFanospectrum.Dependingonhowthesestatesareexcited,theseresonantphenomenamaybemademoreorlesssensitivetothebackgroundmediumandthecoremate-rial,12providinganunprecedented?exibilitytorealizedif-ferentfunctionalities.Aplethoraofapplicationshasbeenenvisionedfromtheseplasmonicstructures,suchasrobustsensors,11nano-biomarkers12andef?cientnonlinearall-opticalswitches.10
Untilnow,themostcommonmaterialsconsideredforplasmonicapplicationshavebeensilver,copper,andgold,becausetheycansustainef?cientexcitationofbothpropa-gatingandlocalizedsurfaceplasmonsatopticalfrequencies.However,theysufferfrominherentdisadvantages,suchasincreasedlosses,highcost,andlowabundanceonEarth,13whichsetseverelimitationstowardsthefuturecommercialapplicationsandmass-productionofplasmonicdevicesbasedonthesematerials.Alternatively,itwasdemonstratedthatef?cientplasmonexcitationcombinedwithrelativelylowlossescanalsobesustainedatmid-infraredfrequenciesusingdopedsemiconductormaterials.12,14,15
Comparatively,lessresearchattentionhasbeendedi-catedtoplasmoniceffectsoccurringatveryhighfrequen-cies,suchasintheultraviolet(UV)spectrum.Thisismainlybecausetheaforementionednoblemetalsandsemiconduc-torshavelowerplasmafrequenciescomparedtotheUVfre-quencyrangeand,asaresult,theyaremostlytransparentanddonotexhibitplasmonicbehaviorinsuchregimes.Aluminum(Al)istheidealmaterialtosustainsurfaceplas-monsatUVwavelengths,duetoitshighplasmafrequency($15eVork¼85nm).Inaddition,AlisthethirdmostabundantelementonEarth,whichmakesitcheapandidealformass-production.InterestinganddiverseapplicationshavebeenrecentlyenvisionedatUVfrequenciesbasedonAlplasmonicdevices,suchasboostednonlinearopera-tions,16ef?cientsurface-enhancedRamanscattering(SERS)substrates,17,18plasmonicnanoantennas,19enhanced?uores-cence,20,21extraordinaryopticaltransmissiongratings,22,23andenergyharvestingdevices.24
C2013AIPPublishingLLCV
0003-6951/2013/103(14)/143113/5/$30.00103,143113-1
143113-2Argyropoulosetal.Appl.Phys.Lett.103,143113(2013)
LessattentionhasbeenpaidtoplasmonicstructuresexhibitingFanoresonancesatUVfrequencies,whichmaybeused,forinstance,assharpsolarblindstoisolateportionsoftheUVfrequencyspectrum,whiletransmittingopticalradiation,orassensitivenanosensorsandphotodetectors.ThereasonforthecomparativelylessamountofresearchonthistopicisthelargerlossfactorofAlintheUVcomparedtoothernoblemetalsatlowerfrequencies,whichhindershigher-orderresonancesonwhichconventionalFanoresponsesarebased.Inthisletter,weexplorethepossibilitytoinducedipole-dipoleplasmonicFanoresonancesatUVfrequenciessupportedbyproperlyengineeredcore-shellsub-wavelengthnanoparticles,similartotheconceptproposedinRef.10foroperationinthevisible.Theproposedgeometry,shownintheinsetofFig.1(b),iscomposedofasapphire(Al2O3)dielectriccorewithradiusacsurroundedbyametal-licshellmadeofaluminumwithradiusa.AccordingtothetheorypresentedinRefs.10–12forthick,subwavelengthplasmonicshells,theelectricdipolarresponseofthisnano-particlecanpresentanultrasharpdegenerateresonantstatewheneAl¼ÀeAl2O3=2.Underthiscondition,thefrequencydispersionofacloaking(dark)statemergeswiththeoneofaresonant(bright)state,producinganasymmetricFano-typeresonanceinthescatteringspectrum.Sincethetwointerfer-ingstatesareassociatedwiththesamedipolarscatteringmode,weareabletorealizeanasymmetric,sharpFano-resonantscatteringsignaturewithasingle,isotropic,andcenter-symmetricsubwavelengthscatterer.
Thescatteringperformanceoftheproposednanoparticleisquantitativelyanalyzedusingthewell-establishedMiescatteringtheory.25RealisticlossesareconsideredforbothAlandAl2O3,theirpermittivityvaluesareobtainedfromex-perimentaldata26andthenanoparticleisembeddedinfreespace.ThenormalizedSCSofasubwavelengthcore-shellnanospherewithinnerlayerradiusac¼3nmandouterra-diusa¼8:5nmiscomputedandplottedinFig.1(a).Interestingly,thenormalizedSCScangofromÀ13dB[pointIinFig.1(a)]toalmostÀ30dB[pointIIinFig.1(a)]inanarrowwavelengthrange.NotethatthissharpFanores-onantlinewidthisobtainedatdeep-UVfrequencies,wheremostmetalsareactuallysemi-transparent,whiledielectricnanoparticlesdonotgenerallyshowpeculiarscatteringsig-naturesbecausedielectricmaterialsareopaqueinthiswavelengthrange,duetotheirlargelyincreasedabsorptionaroundtheinterbandtransitions.Realisticlossesofplas-monicanddielectricmaterialshavebeenfullytakenintoaccountinourcalculations,accuratelyre?ectingtheresponseofarealisticstructureimplementablewithincurrentnanofabricationtechniques.
TheinsetofFig.1(a)showstwosnapshotsintimeoftheEx?eldcomponentatthehighscatteringpointI(resonance)andlowscatteringpointII(cloaking).Enhancedandstronglycon?ned?eldsareobtainedinsidethecompositenanopar-ticleforbothresonantandcloakingstates.Incontrast,out-sidethecore-shellparticle,the?eldsaredramaticallydifferentacrossthelinewidthoftheUVFanoresonance.Intheresonantstate(pointI),largescatteringef?ciencyisobserved,similartoordinarydipolarplasmonicresonancessupportedbysilverorgoldnanoparticlesatopticalfrequen-cies.2Conversely,inthecloakingstate(pointII),theimping-ing?eldstravelaroundthescattereralmostunperturbed,similartoscatteringcancellationdesignsproposedinRefs.27and28.Itisinterestingthatsuchstrongvariationofthe?elddistributioncanbeachievedoveranarrowfrequencyrange,whichindicatesastrongandpeculiarinteractionofthesubwavelengthnanoparticlewithUVradiation.InFig.1(b)across-sectionofthe?eldenhancementðjEj=jEincjÞisplottedalongthex-axiscrossingthecenterofthenanopar-ticleattheresonant(pointI/redline)andcloaking(pointII/blueline)wavelengths.Enhanced?eldsareobtainedinsidetheplasmonicnanoparticleacrosstheentireFanospectrumshowninFig.1(a)andarestronglycon?nedattheinterfacebetweentheAlshellandthesapphirecore.Inthiscase,astronglylocalizedplasmonisformed,andthehigher?eldenhancementatthemetallicshellsideobservedinthe?gurecanbeexplainedbyapplyingtheboundaryconditionontheradialcomponentoftheelectricdisplacementvectoratthisinterface.Evenatthecloakingfrequency,signi?cantlyenhanced?eldsareobservedinthecore,whichmaybeofin-teresttoboostnonlineareffectsatUVfrequencies,asdem-onstratedforopticalantennas29,30andepsilon-near-zeroplasmonicwaveguides31atopticalfrequencies.Thesefea-turesmayleadtothedesignoflow-intensitymemories,switches,andsensitivetunablesensorsatUVwavelengths.
Next,wechecktheeffectofdifferentdielectricback-groundmaterialsinthescatteringresponseofthe
内容需要下载文档才能查看proposed
FIG.1.(a)Normalizedscatteringcrosssectionofthecompositenanoparticlewithgeometryshownintheinsetofpanel(b).Theradiusofthecoreisac¼3nmandtheouterlayerradiusisa¼8:5nm.Theinsetof(a)showssnapshotsintimeoftheEx?eldcomponentattheresonanceandcloakingwavelengths,denotedbyIandII,respectively.(b)Fieldenhancementacrossthecompositenanoparticleasafunctionofthenormalizedtransversedirectionðx=aÞattheres-onantI(redline)andcloakingII(blueline)wavelengths.
143113-3Argyropoulosetal.Appl.Phys.Lett.103,143113(2013)
FIG.2.SensitivityoftheUVFanoresonancetothepermittivityebofthebackgroundmedium.ThenanoparticlehasthesamedimensionsasinFig.1.Thenarrowresonance,cloaking,andbroaddipolarresonancewavelengthsaredenotedbyI,II,andIII,
内容需要下载文档才能查看respectively.
plasmonicnanoparticle.TheUVFanodispersionisplottedinFig.2asafunctionofthesurroundingmediumpermittiv-ity.ItisevidentthattheasymmetricFanoresponseisonlyslightlyaffectedbyvariationsofthebackgroundpermittiv-ity,whichisconsistentwiththeresultspresentedinRef.12.Thephysicalreasonforthisbehavioristhatthecloaking-resonancepairsupportingthedipole-dipoleUVFanoreso-nanceissustainedbythelocalizedplasmonresidingattheinnersphericalinterfacebetweentheplasmonic(Al)shellanddielectric(Al2O3)core.Hence,thepeak(pointI)anddip(pointII)inthescatteringresponsearealmostinsensitivetothebackgroundenvironment.Onthecontrary,thebroaddipolarresonanceatlowerfrequencies(pointIIIinFig.2)isstronglyaffectedbythebackgroundmaterial.12Asaresult,thenanoparticlescanbeembeddedinanyhostmediumwith-outsigni?cantlyaffectingthemainfeaturesandrobustnessofthis“built-in”UVFanoresponse,whichmayleadto,e.g.,UVtaggingapplications.
Inarealisticscenario,theidealcore-shellgeometrythatwehavedescribedwouldbemodi?eduponexposuretoambi-entconditions,sincethealuminumouterlayermayoxidizeandathinnativeoxideAl2O3layerwouldformaroundtheAlinterface.32,33Here,weexplorethisissueandquantitativelyassesstheperformanceofthemodi?edgeometry,consideringanadditionalthinlayer(1:5nm)ofAl2O3aroundtheplas-monicouterlayerofthecore-shellgeometryofFig.1,as
shownintheinsetofFig.3(b).Thenanoparticlehasnowthreelayersandthedimensionsarechosentobe:coreradiusac1¼3nm,middleplasmoniclayerradiusac2¼8:5nm(samedimensionsasinFig.1forafaircomparison),andouterlayerradiusa¼10nm.ThecalculatednormalizedSCSforthismultilayerednanoparticleisshowninFig.3(a),demon-stratingsimilarlysharpfeaturesintheUVrange.Asexpected,thescatteringexcursionisslightlysmaller,andtheresonancebandwidthabitbroadercomparedtothepreviouscase[seeFig.1(a)],duemainlytotheOhmiclossesofthesapphireouterlayer,whichdissipatespartoftheimpingingUVradia-tion,hencereducingtheef?ciencyofplasmonexcitation.However,afairlysharpFanoresponseisstillpreserved.Alsointhiscaseweassumedafree-spacebackground,butweexpecttheUVFanoresonancetobealmosttotallyunaffectedbyachangeinhostmedium,asshowninFig.2.
The?eldsarestillcon?nedinsidethenanoparticleandstronglyenhancedacrosstheFanoresonancelinewidth[Fig.3(b)]whencomparedtotheincidentradiation,asshowninthe?elddistributionsintheinsetofFig.3(a)atthewave-lengthsoftheresonant(pointI)andcloakingstates(pointII).The?eldenhancementisslightlylowercomparedtothetwo-layercaseshowninFig.1(b),duetotheadditionalthinouterlayerofAl2O3,whichstronglyaffectsthesurfaceplas-monlocalizedattheoutersphericalinterface,asevidentbyacomparisonofthe?elddistributionsinFigs.1and3.However,highenhancementoftheelectric?eldisstillobtained,especiallyattheinterfacebetweentheAlshellandtheAl2O3core,andthe?eldlevelinsidethecoreisalmostthesameasbefore.Notethattheabruptdropin?eldenhancementintheoutersapphirelayerismainlyduetothehighvalueofpermittivityofAl2O3inthisfrequencyregion26andthecontinuityofthenormalcomponentoftheelectricdisplacementvector.TheseresultsdemonstratethatnarrowdipolarFanoresonantfeaturesandhighlyenhanced?eldsarepreservedevenafteroxidizationoftheAlshells,whichmaketheproposedcompositeplasmonicstructureappealingforpracticalrealizationsandrealisticapplications.
Thescatteringsignalobtainedfromanindividualplas-monicnanoparticleissmallinthefar-?eld,duetoitsextremelysubwavelengthdimensions,andforpracticalpur-posescollectionsofsuchparticleswouldbeofmoreinteresttoformmorecomplexnanodevices.Forthisreason,
内容需要下载文档才能查看we
FIG.3.(a)Normalizedscatteringcrosssectionofthethree-layercompositenanoparticlewithgeometryshownintheinsetofpanel(b).Theradiusofthecoreisac1¼3nm,themiddlelayerradiusac2¼8:5nm,andtheouterlayerradiusa¼10nm.Theinsetof(a)showstwosnapshotsintimeoftheEx?eldcompo-nentattheresonanceandcloakingwavelengths,denotedbyIandII,respectively.(b)Fieldenhancementacrossthethree-layercompositenanoparticleasafunctionofthenormalizedtransversedirectionðx=aÞattheresonantI(redline)andcloakingII(blueline)wavelengths.
143113-4Argyropoulosetal.Appl.Phys.Lett.103,143113(2013)
FIG.4.(a)Anin?niteperiodicarrayofcompositenanoparticleswithgeometry,parametersanddimensionsasinFig.1.Theperiodicityischosentobedx¼dy¼2:5a¼21:25nm.Amplitudeof(b)re?ection,(c)transmission,and(d)absorptioncoef?cientsofthemeta-surfaceshowninpanel(a).
considernextanarrayofcompositenanoparticles,inwhichtheeffectsofinterferencebetweenradiated?eldsmaybetai-loredatwill.InFig.4(a),weshowaplanararrayofthepro-posedplasmonicnanoparticles,whicheffectivelyrealizesaquasi-homogeneousplanar“metasurface.”29,30Thenanopar-ticleshaveparameters,geometryanddimensionsasinFig.1andarearrangedinasquarelatticewithperiodicitydx¼dy¼2:5a,whereaistheouterradiusofeachnanopar-ticle.Transmissionandre?ectioncoef?cientsofthisplanar-izedin?nitearrayarecalculatedwithafastconvergingsummation,34whichtakesintoaccountthefulldynamiccou-plingamongnanoparticles.Theamplitudeoftheresultedre?ectionandtransmissioncoef?cientsareplottedinFigs.4(b)and4(c),respectively.Theproposed“UV-metasurface”providessharpFanotransmissionandre?ectionfeaturesatdeep-UVfrequencies,similartothescatteringresponseofthesinglenanoparticleshowninFig.1(a).Itisinterestingthatthetransmissionsignatureresembleselectromagnetic-induced-transparency(EIT)scatteringpatterns,35,36withtherelevantdifferencesthatitisbasedhereonpurelydipolarresonances,providingmorerobustnesstoloss,anditarisesatdeep-UVfrequencies.Wehaveveri?edthatinthelimitofweakcoupling,theFanoresonanceofthe?nitearraytendstotheoneofanisolatednanoparticle,aslongastheinterpar-ticledistanceissubwavelength,andgratingeffectsarenotpresent.
Finally,theabsorptionoftheproposedUVnanodeviceiscalculatedfromthetransmissionandre?ectioncoef?cientsusingpowerconservation,anditisplottedinFig.4(d).Almost50%ofthetotalabsorptionisinterestinglyachievedinadeep-UVfrequencywindow.Thisbehaviorisidealtowardstherealizationofdeep-UVphotodetectorsandsolarblinds,forwhichweneedtoef?cientlyisolatetheUVfre-quenciesfromtheimpingingsolarradiationspectrum.Similarperformancewillbeobtainedincasethemetasurfaceisembeddedindifferentbackgroundmedia,asdemonstratedinFig.2.NumerousotherapplicationsmaybeenvisionedbasedontheproposedUV-metasurfaces,suchasnon-line-
of-sightcommunications37withsuchshort-wavelengthradi-ation,andef?cientUVoptical?ltersindependentofback-groundvariationsmaybedesignedbasedontheproposedconcepts.
Toconclude,wehaveexploredthedesignandperform-anceofacore-shellplasmonicnanoparticlethatstronglyinteractswiththeimpingingradiationatdeep-UVfrequen-cies,allowingstrongmanipulationofthescatteringresponse.DipolarUVFanoresonanceshavebeendemonstratedbasedonasinglesubwavelengthcompositenanoparticleconsistingofanaluminumshellsurroundingasapphirecore.RealisticOhmiclossesandthenaturaloxidizationofAlhavebeentakenintofullaccountinourcalculations.ThedescribedUVscatteringresponsemaybetunedtoalargedegreebyalter-ingthesizeandshapeofthestructure,providingadditional?exibilityinthedesignoftheproposedUVoptical?lters.ThecollectiveresponseofaplanarmetasurfacecomposedofanarrayoftheproposedplasmonicnanoparticleshasbeenshowntoexhibitsharpUVFanoandEITfeaturesinthere?ectionandtransmissioncoef?cients,whichmayleadtotherealizationofintegratedplanarizedUVnanodeviceswith?lteringeffects.Moreover,themetasurfacehasbeenfoundtoachievealmost50%ofabsorptioninadeep-UVfrequencywindow,aninterestingfeature,inparticular,forenergyhar-vestinganddefenseapplications.TheproposedFanoscatter-ingfeatureshavebeenfoundtobeveryrobusttodifferentdielectricbackgroundmedia.Inconclusion,webelievethatour?ndingsmayextendthereachofplasmonicFanoresonancesandotheranomalouseffectstodeep-UVwave-lengths.OurresultsprovethataluminumisanidealmaterialtosustainlocalizedplasmonsatUVfrequenciesandmayleadtotherealizationofef?cientUVplasmonicdevicesandnanocircuits.
ThisworkhasbeenpartiallysupportedbytheAROSTTRproject“DynamicallyTunableMetamaterials,”AFOSRwiththeYIPAwardNo.FA9550-11-1-0009andtheONRMURIGrantNo.
内容需要下载文档才能查看N00014-10-1-0942.
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 建筑工程鉴定标准及地震后房屋鉴定技术应用_邓建荣
- 迭代计算表恒
- 哈工大PLC大作业
- 褥垫层方案
- MC-12,an Annexin A1-Based Peptide, Is Effective in the
- 单片机典型编程2.4
- 现有砌体结构抗震检测_鉴定_加固的关键问题_张健
- 单代号搭接网络计划计算
- 叉车1
- DSP芯片的简介
- 单片机典型编程2.2
- 新建 临港工业区质量控制点与措施
- Inflammatory Macrophages_Induce_Transcription_Factor-dependent_Proteasome_Activity_in_Colonic_N1
- 图像监视系统包1,2015陕西
- 长江路西延桥面铺装及防撞护栏施工方案
- 单片机编程1.3.
- 高峰论坛资料
- ADS2011教程
- 方案
- 令人回味无穷的推广文章
- ERP能效标准计算
- 工时统计表
- 单片机典型问答题及答案
- 单片机编程1.2
- UYT-88防腐型静压式液位计
- Whole-exome SNP array identifies 15 new susceptibility loci for psoriasis
- 挡土墙截面设计直接计算方法
- 关于室外给水增加工程量
- 隧道衬砌综合接地
- 电动自行车
网友关注视频
- 《空中课堂》二年级下册 数学第一单元第1课时
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 二年级下册数学第一课
- 河南省名校课堂七年级下册英语第一课(2020年2月10日)
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 外研版英语七年级下册module1unit3名词性物主代词讲解
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 冀教版小学数学二年级下册第二单元《租船问题》
- 冀教版英语三年级下册第二课
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
- 七年级下册外研版英语M8U2reading
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 沪教版八年级下册数学练习册21.3(3)分式方程P17
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 北师大版数学四年级下册3.4包装
- 人教版二年级下册数学
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
- 外研版英语七年级下册module3 unit2第二课时
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理