教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 工程科技> 交通运输> The stable crews problem

The stable crews problem

上传者:冯晓刚
|
上传时间:2015-05-07
|
次下载

The stable crews problem

内容需要下载文档才能查看 内容需要下载文档才能查看

DiscreteAppliedMathematics140(2004)1–

内容需要下载文档才能查看

http://wendang.chazidian.com/locate/dam

Thestablecrewsproblem??

KatarÃ??naCechlÃarovÃaa;?,SoÄnaFerkovÃab

ÄarikUniversity,JesennÃofMathematics,FacultyofScience,P.J.SafÃa5,04154KoÄsice,SlovakiabTatraBanka,a.s.,SoftwareDevelopmentDepartment,ITDivision,HodÄzovonÃam.,81421Bratislava,SlovakiaaInstitute

Received27November2001;receivedinrevisedform13February2003;accepted26May2003Abstract

Inthispapertheclassicalstableroommatesproblemisgeneralizedtosituationswhenthetwopartnersinapairperformdi??erentroles.Weproposeane??cientalgorithmtodecidetheexistenceofastablematchinginthisproblem.?2003ElsevierB.V.Allrightsreserved.

MSC:90C12;68Q25

Keywords:Thestableroommatesproblem;Thestablecrewsproblem;Polynomialalgorithms

1.Introduction

Theclassicalstableroommatesproblem(SRPforshort)introducedin[1]dealswithsituationswhenasetofparticipants,saystudents,hastobepartitionedintopairs,i.e.eachstudenthastobeassignedaroommate.Inthismodelitissupposedthatallthestudentshaveclearpreferencesovertheirprospectiveroommatesandthataparticipant’ssatisfactionwithaparticularmatchingisbasedsolelyontheidentityofhisroommate.Providedtherearenotwoparticipantswhoprefereachothertotheirpartnersinaparticularmatching,thenthematchingiscalledstable.Insomecasesasimplepartitionofpeopleintopairsisnotanappropriatemodel.Imagineagroupofpilots,whohavetobepartitionedintotwo-personaeroplanecrews.Inacrew,say,onepilotisthecaptainandtheotherthenavigator.ItisnaturaltoThisworkwassupportedbytheSlovakAgencyforScience,“CombinatorialStructuresandComplexityofAlgorithms”,1/0425/03.?Correspondingauthor.E-mailaddress:cechlarova@science.upjs.sk(K.CechlÃarovÃa).

0166-218X/$-seefrontmatter?2003ElsevierB.V.Allrightsreserved.doi:10.1016/j.dam.2003.05.003??

2K.CechlÃarovÃa,S.FerkovÃa/DiscreteAppliedMathematics140(2004)1–17

expectthatapilot’sevaluationofacrewdependsnotonlyontheidentityofhispartner,butalsoonthedistributionoftheroles.Forexample,pilotimaylikepilotjasanavigator,butconsiderhimtobequiteapoorcaptain.Inthispaper,weproposetomodelsuchsituationsbyallowingeachparticipantitoincludeinhispreferencelisttwocopiesofeveryotherparticipantj,representingthetwopossiblerolesjcanperforminacrewconsistingofiandj.Weshowthatour‘stablecrewsproblem’(SCPforshort)isageneralizationofthestableroommatesproblem.Further,ifthepreferencesofparticipantsarestrict,itispossibletodecidetheexistenceofastablematchingbyapolynomialalgorithmthatisanextensionofIrving’sclassicalstableroommatesalgorithm[2,3].InSection2,wedeÿneformallythestablecrewsproblemandintroducetheessentialterminologyusedinthepaper.Section3isdevotedtotherelationbetweentheSRPandtheSCP.ThestablecrewsalgorithmisderivedinSection4.Finally,Section5summarizestheresultsandoutlinespossibletopicsforfutureresearch.

2.Deÿnitionsandnotation

Nisthesetofparticipantsandwesupposethat|N|=niseven.ThesetN×{1;2}willrepresenttheparticipantswithassignedroles.Anelement[i;t]∈N×{1;2}willusuallybedenotedbyit.Foreachparticipanti∈Nthereisacomplete,re exiveandtransitivepreferencerelationdeÿnedonasubsetof(N\{i})×{1;2}denotedby??i.Ifat??ibs,thenwesaythatparticipantiprefersparticipantainrolettoparticipantbinroles.Ifat??ibsandbs??iat,thenwesaythatparticipantiisindi??erentbetweenparticipantsa;bintherespectiverolesandweshallwriteat?ibs.Ifat??ibsandbs??iatdoesnothold,thenparticipantistrictlyprefersparticipantainrolettoparticipantbinrolesandweshallwriteat??ibs.Thepreferencerelationofparticipanti∈NwillberepresentedbyanorderedpreferencelistdenotedbyP(i).WesaythatparticipantjinroletisacceptableforparticipantiifjtappearsinP(i).Otherwise,jtisunacceptablefori.(Notethatjinrole3?tmaystillbeacceptablefori.)Ann-tupleofpreferencelistsofallparticipantsfromNwillbecalledapreferenceproÿleanddenotedbyP.

Deÿnition1.Aninstanceofthestablecrewsproblemisapair{N;P}.

Deÿnition2.Foragiveninstance{N;P}oftheSCP,afunction??:N→N×{1;2}willbecalledamatching,ifforalli;j∈Nandt∈{1;2}thefollowingconditionsarefulÿlled:

(i)??(i)∈P(i),(ii)if??(i)=jt,thenj=i,(iii)??(i)=jt???(j)=i3?t.

If??(i)=j2(or,equivalently,??(j)=i1)weshallwrite,withsomeabuseofnotation,(i1;j2)∈??.

K.CechlÃarovÃa,S.FerkovÃa/DiscreteAppliedMathematics140(2004)1–173

Deÿnition3.Apair(i1;j2)∈[N×{1;2}]2iscalledablockingpairforamatching??ifj2??i??(i)andi1??j??(j).Amatchingiscalledstableifitisfreeofblockingpairs.Apair(i1;j2)willbecalledastablepairifthereexistsastablematching??suchthat(i1;j2)∈??.

Example1.ConsiderthefollowingpreferenceproÿleforthesetofparticipantsN={a;b;c;d}:

P(a)

P(b)

P(c)===b1;b2;d2;c1;c2;d1;a2;d1;c2;d2;a1;a2;b2;b1;a1;d1;d2;

P(d)=b1;a1;c1:

Here,forexample,theÿrstchoiceofparticipantbisparticipantainthesecondrole,hissecondchoiceisparticipantdintheÿrstrole,histhirdchoiceparticipantcinthesecondrole,etc.Noticethatb’sÿrstchoiceisparticipantainthesecondrolewhileb’slastchoiceisparticipantainÿrstrole;alsocintheÿrstroleisunacceptableforb.Noticealsothatthepair(a1;b2)couldneverbeastablepair,sinceitwouldalwaysbeblockedby(a2;b1)(theparticipantswouldsimplyswitchtheirrolesinacrew).

3.Stablecrewsgeneralizestableroommates

Theorem4.ForeveryinstanceIoftheSRPwithnparticipantsthereexistsaninstanceI??oftheSCPwithnparticipantssuchthateverystablematchingofIcorrespondstoastablematchingofI??andviceversa.

Proof.SupposethatI=(N;P)isaninstanceoftheSRP.Letusdeÿneanarbitrarystrictlinearordering onNanddeÿneaninstanceI??=(N;P??)oftheSCPinthefollowingway:Foreachx∈Nreplaceeachparticipanty∈P(x)bytwoconsecutivecopiesofyinordery1;y2ify xandinordery2;y1otherwise.Let??beastablematchingforI.Letusdeÿneamatching????forI??asfollows:if{x;y}∈??inIandx y,then(x1;y2)∈????.Clearly,????isamatchingforI??andweshowthatitisstableaswell.First,??(x)∈P(x)foreachx,henceduetotheconstructionofP??and????wehave????(x)∈P??(x).Nowsupposethatapair(u1;v2)blocks????.Thismeansthat????(u)?uv2and????(v)?vu1.Letusconsiderthreepossiblecases:

(1)????(u)=v1and????(v)=u2.Then????(u)?uvtand????(v)?vutforbotht=1;2inP??.Butthenv??u??(u)andu??v??(v)inP,whichimpliesthatthepair{u;v}blocks??inI.Acontradiction.(2)????(u)=v1and????(v)=u2or????(u)=v1and????(v)=u2inI??.Thiscontradictsthedeÿnitionofamatching.

4K.CechlÃarovÃa,S.FerkovÃa/DiscreteAppliedMathematics140(2004)1–17

(3)????(u)=v1and????(v)=u2.Sincev2??u????(u)=v1andu1??v????(v)=u2,wehaveu v.But,thedeÿnitionof????implies(u1;v2)∈????,acontradiction.

Toprovetheconverseimplication,letusdeÿneforastablematching????inI??amatching??inIasfollows:if(x1;y2)∈????inI??(noticethatinthiscase(y1;x2)isnotastablepairinI??),then{x;y}∈??inI.Obviously,??isamatchingforI.Nowsupposethat??isnotstable,i.e.,thereexistsablockingpair{u;v}for??.Then??(u)?uvand??(v)?vuandso??(u)t?uvsand??(v)t?vusfort;s=1;2whichimpliesthat????isnotstable,acontradiction.

AconverseofTheorem4isnottrue,i.e.thereareinstancesoftheSCPforwhichitisnotclearhowtodeÿnea‘corresponding’instanceoftheSRP(seeExample1);orthiscorrespondinginstanceisquitenatural,buttheSCP-matchingsdonotleadunambiguouslytoSRP-matchings,asisillustratedbythefollowingexample.

Example2.ConsiderthefollowingpreferenceproÿlesfortheSCPwithtwopartici-pantsa;b.

P1:P(a)=b1,P(b)=a1.P2:P(a)=b1;b2,P(b)=a2;a1.P3:P(a)=b1;b2,P(b)=a1;a2.

Obviously,toallthreepreferenceproÿlesonlyonepreferenceproÿle

P:P(a)=b;

P(b)=a

fortheSRPcanbeassigned;givingauniquestablematching??={a;b}.Nevertheless,P1doesnotadmitanymatching,forP2thereisauniquestablematching??2=??{(b1;a2)},whileinP3therearetwostablematchings??3={(b1;a2)}and??3={(a1;b2)}.

4.Thestablecrewsalgorithm

InthissectionwealwaysconsideraninstanceoftheSCPwithstrictpreferences.ThealgorithmdescribedinthissectionisanextensionofIrving’sclassicalStableRoommatesAlgorithm,see[3,2].Thereforeletusnowrecallthisalgorithminbrief.TheStableRoommatesAlgorithmstartswithaso-calledconsistentpreferenceproÿle(apreferenceproÿleisconsistent,ifforeachpairofparticipantsx;y∈N:x∈P(y)ifandonlyify∈P(x))anditconsistsoftwophases.Phase1isbasedonasequenceofproposals.Afreeparticipant,sayx,proposestotheÿrstparticipantinhislist,sayy.Asaresult,participantxbecomessemiengagedtoyandydeletesalltheparticipantsworsethanxfromhispreferencelist.Phase1terminateswhensomepreferencelistbecomesempty(thenthegiveninstanceoftheSRPhasnostablesolution)orwhentherearenomorefreeparticipantsleft.Ifonterminationeverypreferencelistcontainsjustoneentry,thenthereducedproÿleconstitutesastablesolution.Otherwise,thealgorithmproceedswithPhase2.

K.CechlÃarovÃa,S.FerkovÃa/DiscreteAppliedMathematics140(2004)1–175

InPhase2pairsofparticipantsarefurtherdeletedfromtheproÿlebymeansofrotationelimination.(Thenotionofarotationwillbeexplainedlater.)TheterminationconditionsforPhase2areidenticaltothoseforPhase1.DuetothefactthattheSCP,incontrasttotheSRP,considersparticipantsinroles,weneedtoincorporatecertainmodiÿcationsandrevisionstoIrving’soriginalalgo-rithm:

(1)Werequireastrictlyconsistentproÿleastheinputtothealgorithm.(2)Phase1is,apartfromtechnicaldetails,identicalwithPhase1ofIrving’salgorithm.(3)Phase2isanalogoustoIrving’sPhase2,butweintroduceanewelement,calledthedoublefavouriteelimination.

Everyproÿlegeneratedduringtheexecutionofthealgorithmwillbereferredtoasareducedproÿle.ForagivenreducedpreferenceproÿleTandaparticipantx,theÿrst,thesecondandthelastparticipantintherespectiverolesinx’spreferencelistPT(x)willbedenotedbyfT(x);sT(x)andlT(x),respectively.(Iftheproÿleisclearfromthecontext,thenthesubscriptsindicatingtheproÿlecanbeomitted.)

4.1.Strictconsistency

ThenotionofstrictconsistencyisageneralizationofconsistencydeÿnedfortheSRP.

Deÿnition5.Let{N;P}beaninstanceoftheSCP.WesaythatapreferenceproÿlePisstrictlyconsistent,ifforallparticipantsx;y∈Nandt∈{1;2}thefollowingholds:(i)xt∈P(y)ifandonlyify3?t∈P(x).(ii)ifyt;y3?t∈P(x)andyt??xy3?t,thenxt??yx3?t.

Thesecondconditionisimpliedbytheconsiderationthatifyt??xy3?t,andx3?t??yxt,thenthepair(xt;y3?t)isalwaysblockedbythepair(yt;x3?t).Weshallsupposethattheinputpreferenceproÿleisstrictlyconsistent(whichisotherwisetrivialtoachievebyappropriatedeletions).Inthealgorithmeverydeletion,e.g.deletionofxtfromP(y),alwaysmeansdeletionofthepair(xt;y3?t),i.e.y3?tisalsodeletedfromP(x)thuspreservingstrictconsistency.

Example3.Considertheinstance{N;P}oftheSCPwiththesetofparticipantsN={a;b;c;d;e;f}andthepreferenceproÿleP:

P(a)

P(b)

P(c)

P(d)=d1;f2;b1;d2;b2;e1;e2;f1,=c1;c2;a1;e1;e2;a2;d1;f2,==d2;e2;b1;e1;f1;b2,b2;f1;c1;a2;e1;f2;e2,

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

高中历史学法指导
jh制药集团营销人员绩效管理研究
基于校本的高中作文训练序列的研究
山西省实验中学09届高三第一次月考
2012高考英语核心考点解析单项选择
反冲运动 火箭
国内民俗旅游市场细分研究
黑龙江省养生旅游市场研究
机械牵张应力对成骨细胞生物特性的影响及蛋白组学研究
高中地理 全套教案 新人教版必修1
医学CT图像数字水印算法的研究
阿维森纳《医典》与孙思邈《千金方》养生思想的比较研究
文章非天成,妙手巧指引.doc
摩擦力练习
阿维森纳《医典》与孙思邈《千金方》养生思想的比较研究
记叙文写作456[整理版]
东北师大附中、哈师大附中、辽宁实验中学2011届高三第二次联合模拟考试理科综合试题
毕业论文:基本药物制度对乡镇卫生院的影响与对策研究
作文审题技巧课件(徐永生)
中小企业薪酬管理的研究
友谊中学高二物理电场专用
浅谈初中数学课堂提问的有效性——参加胜利教育管理中心“初中数学教师专业成长”高级研修班学习有感
民族政治学专业毕业论文 [精品论文] 西部民族地区环保非政府组织研究——基于治理理论的视角
枣庄地区民俗美术形式研究
样本讨论作文批改方式研究论文
湖南少数民族民俗旅游深度开发研究
横观新课程理念下高考历史材料解析题的发展——以2012年高考试卷历史中的材料解析题为例
山东省德州市乐陵一中高三历史文化史复习导学案:《音乐与美术》
研究性学习课题——英文中的广告课题研究
上海制药行业人才流失及对策研究--优秀毕业论文 可复制黏贴

网友关注视频

沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
七年级英语下册 上海牛津版 Unit9
精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
沪教版八年级下册数学练习册21.3(3)分式方程P17
冀教版英语四年级下册第二课
沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
冀教版英语三年级下册第二课
外研版英语三起6年级下册(14版)Module3 Unit2
七年级英语下册 上海牛津版 Unit5
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
七年级英语下册 上海牛津版 Unit3
北师大版数学 四年级下册 第三单元 第二节 小数点搬家
第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
外研版英语七年级下册module3 unit1第二课时
化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
外研版英语七年级下册module3 unit2第一课时
沪教版八年级下册数学练习册21.4(1)无理方程P18
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
二年级下册数学第三课 搭一搭⚖⚖
冀教版小学英语五年级下册lesson2教学视频(2)
【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
苏科版八年级数学下册7.2《统计图的选用》
苏教版二年级下册数学《认识东、南、西、北》
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594