The stable crews problem
上传者:冯晓刚|上传时间:2015-05-07|密次下载
The stable crews problem
内容需要下载文档才能查看 内容需要下载文档才能查看
DiscreteAppliedMathematics140(2004)1–
内容需要下载文档才能查看http://wendang.chazidian.com/locate/dam
Thestablecrewsproblem??
KatarÃ??naCechlÃarovÃaa;?,SoÄnaFerkovÃab
ÄarikUniversity,JesennÃofMathematics,FacultyofScience,P.J.SafÃa5,04154KoÄsice,SlovakiabTatraBanka,a.s.,SoftwareDevelopmentDepartment,ITDivision,HodÄzovonÃam.,81421Bratislava,SlovakiaaInstitute
Received27November2001;receivedinrevisedform13February2003;accepted26May2003Abstract
Inthispapertheclassicalstableroommatesproblemisgeneralizedtosituationswhenthetwopartnersinapairperformdi??erentroles.Weproposeane??cientalgorithmtodecidetheexistenceofastablematchinginthisproblem.?2003ElsevierB.V.Allrightsreserved.
MSC:90C12;68Q25
Keywords:Thestableroommatesproblem;Thestablecrewsproblem;Polynomialalgorithms
1.Introduction
Theclassicalstableroommatesproblem(SRPforshort)introducedin[1]dealswithsituationswhenasetofparticipants,saystudents,hastobepartitionedintopairs,i.e.eachstudenthastobeassignedaroommate.Inthismodelitissupposedthatallthestudentshaveclearpreferencesovertheirprospectiveroommatesandthataparticipant’ssatisfactionwithaparticularmatchingisbasedsolelyontheidentityofhisroommate.Providedtherearenotwoparticipantswhoprefereachothertotheirpartnersinaparticularmatching,thenthematchingiscalledstable.Insomecasesasimplepartitionofpeopleintopairsisnotanappropriatemodel.Imagineagroupofpilots,whohavetobepartitionedintotwo-personaeroplanecrews.Inacrew,say,onepilotisthecaptainandtheotherthenavigator.ItisnaturaltoThisworkwassupportedbytheSlovakAgencyforScience,“CombinatorialStructuresandComplexityofAlgorithms”,1/0425/03.?Correspondingauthor.E-mailaddress:cechlarova@science.upjs.sk(K.CechlÃarovÃa).
0166-218X/$-seefrontmatter?2003ElsevierB.V.Allrightsreserved.doi:10.1016/j.dam.2003.05.003??
2K.CechlÃarovÃa,S.FerkovÃa/DiscreteAppliedMathematics140(2004)1–17
expectthatapilot’sevaluationofacrewdependsnotonlyontheidentityofhispartner,butalsoonthedistributionoftheroles.Forexample,pilotimaylikepilotjasanavigator,butconsiderhimtobequiteapoorcaptain.Inthispaper,weproposetomodelsuchsituationsbyallowingeachparticipantitoincludeinhispreferencelisttwocopiesofeveryotherparticipantj,representingthetwopossiblerolesjcanperforminacrewconsistingofiandj.Weshowthatour‘stablecrewsproblem’(SCPforshort)isageneralizationofthestableroommatesproblem.Further,ifthepreferencesofparticipantsarestrict,itispossibletodecidetheexistenceofastablematchingbyapolynomialalgorithmthatisanextensionofIrving’sclassicalstableroommatesalgorithm[2,3].InSection2,wedeÿneformallythestablecrewsproblemandintroducetheessentialterminologyusedinthepaper.Section3isdevotedtotherelationbetweentheSRPandtheSCP.ThestablecrewsalgorithmisderivedinSection4.Finally,Section5summarizestheresultsandoutlinespossibletopicsforfutureresearch.
2.Deÿnitionsandnotation
Nisthesetofparticipantsandwesupposethat|N|=niseven.ThesetN×{1;2}willrepresenttheparticipantswithassignedroles.Anelement[i;t]∈N×{1;2}willusuallybedenotedbyit.Foreachparticipanti∈Nthereisacomplete,re exiveandtransitivepreferencerelationdeÿnedonasubsetof(N\{i})×{1;2}denotedby??i.Ifat??ibs,thenwesaythatparticipantiprefersparticipantainrolettoparticipantbinroles.Ifat??ibsandbs??iat,thenwesaythatparticipantiisindi??erentbetweenparticipantsa;bintherespectiverolesandweshallwriteat?ibs.Ifat??ibsandbs??iatdoesnothold,thenparticipantistrictlyprefersparticipantainrolettoparticipantbinrolesandweshallwriteat??ibs.Thepreferencerelationofparticipanti∈NwillberepresentedbyanorderedpreferencelistdenotedbyP(i).WesaythatparticipantjinroletisacceptableforparticipantiifjtappearsinP(i).Otherwise,jtisunacceptablefori.(Notethatjinrole3?tmaystillbeacceptablefori.)Ann-tupleofpreferencelistsofallparticipantsfromNwillbecalledapreferenceproÿleanddenotedbyP.
Deÿnition1.Aninstanceofthestablecrewsproblemisapair{N;P}.
Deÿnition2.Foragiveninstance{N;P}oftheSCP,afunction??:N→N×{1;2}willbecalledamatching,ifforalli;j∈Nandt∈{1;2}thefollowingconditionsarefulÿlled:
(i)??(i)∈P(i),(ii)if??(i)=jt,thenj=i,(iii)??(i)=jt???(j)=i3?t.
If??(i)=j2(or,equivalently,??(j)=i1)weshallwrite,withsomeabuseofnotation,(i1;j2)∈??.
K.CechlÃarovÃa,S.FerkovÃa/DiscreteAppliedMathematics140(2004)1–173
Deÿnition3.Apair(i1;j2)∈[N×{1;2}]2iscalledablockingpairforamatching??ifj2??i??(i)andi1??j??(j).Amatchingiscalledstableifitisfreeofblockingpairs.Apair(i1;j2)willbecalledastablepairifthereexistsastablematching??suchthat(i1;j2)∈??.
Example1.ConsiderthefollowingpreferenceproÿleforthesetofparticipantsN={a;b;c;d}:
P(a)
P(b)
P(c)===b1;b2;d2;c1;c2;d1;a2;d1;c2;d2;a1;a2;b2;b1;a1;d1;d2;
P(d)=b1;a1;c1:
Here,forexample,theÿrstchoiceofparticipantbisparticipantainthesecondrole,hissecondchoiceisparticipantdintheÿrstrole,histhirdchoiceparticipantcinthesecondrole,etc.Noticethatb’sÿrstchoiceisparticipantainthesecondrolewhileb’slastchoiceisparticipantainÿrstrole;alsocintheÿrstroleisunacceptableforb.Noticealsothatthepair(a1;b2)couldneverbeastablepair,sinceitwouldalwaysbeblockedby(a2;b1)(theparticipantswouldsimplyswitchtheirrolesinacrew).
3.Stablecrewsgeneralizestableroommates
Theorem4.ForeveryinstanceIoftheSRPwithnparticipantsthereexistsaninstanceI??oftheSCPwithnparticipantssuchthateverystablematchingofIcorrespondstoastablematchingofI??andviceversa.
Proof.SupposethatI=(N;P)isaninstanceoftheSRP.Letusdeÿneanarbitrarystrictlinearordering onNanddeÿneaninstanceI??=(N;P??)oftheSCPinthefollowingway:Foreachx∈Nreplaceeachparticipanty∈P(x)bytwoconsecutivecopiesofyinordery1;y2ify xandinordery2;y1otherwise.Let??beastablematchingforI.Letusdeÿneamatching????forI??asfollows:if{x;y}∈??inIandx y,then(x1;y2)∈????.Clearly,????isamatchingforI??andweshowthatitisstableaswell.First,??(x)∈P(x)foreachx,henceduetotheconstructionofP??and????wehave????(x)∈P??(x).Nowsupposethatapair(u1;v2)blocks????.Thismeansthat????(u)?uv2and????(v)?vu1.Letusconsiderthreepossiblecases:
(1)????(u)=v1and????(v)=u2.Then????(u)?uvtand????(v)?vutforbotht=1;2inP??.Butthenv??u??(u)andu??v??(v)inP,whichimpliesthatthepair{u;v}blocks??inI.Acontradiction.(2)????(u)=v1and????(v)=u2or????(u)=v1and????(v)=u2inI??.Thiscontradictsthedeÿnitionofamatching.
4K.CechlÃarovÃa,S.FerkovÃa/DiscreteAppliedMathematics140(2004)1–17
(3)????(u)=v1and????(v)=u2.Sincev2??u????(u)=v1andu1??v????(v)=u2,wehaveu v.But,thedeÿnitionof????implies(u1;v2)∈????,acontradiction.
Toprovetheconverseimplication,letusdeÿneforastablematching????inI??amatching??inIasfollows:if(x1;y2)∈????inI??(noticethatinthiscase(y1;x2)isnotastablepairinI??),then{x;y}∈??inI.Obviously,??isamatchingforI.Nowsupposethat??isnotstable,i.e.,thereexistsablockingpair{u;v}for??.Then??(u)?uvand??(v)?vuandso??(u)t?uvsand??(v)t?vusfort;s=1;2whichimpliesthat????isnotstable,acontradiction.
AconverseofTheorem4isnottrue,i.e.thereareinstancesoftheSCPforwhichitisnotclearhowtodeÿnea‘corresponding’instanceoftheSRP(seeExample1);orthiscorrespondinginstanceisquitenatural,buttheSCP-matchingsdonotleadunambiguouslytoSRP-matchings,asisillustratedbythefollowingexample.
Example2.ConsiderthefollowingpreferenceproÿlesfortheSCPwithtwopartici-pantsa;b.
P1:P(a)=b1,P(b)=a1.P2:P(a)=b1;b2,P(b)=a2;a1.P3:P(a)=b1;b2,P(b)=a1;a2.
Obviously,toallthreepreferenceproÿlesonlyonepreferenceproÿle
P:P(a)=b;
P(b)=a
fortheSRPcanbeassigned;givingauniquestablematching??={a;b}.Nevertheless,P1doesnotadmitanymatching,forP2thereisauniquestablematching??2=??{(b1;a2)},whileinP3therearetwostablematchings??3={(b1;a2)}and??3={(a1;b2)}.
4.Thestablecrewsalgorithm
InthissectionwealwaysconsideraninstanceoftheSCPwithstrictpreferences.ThealgorithmdescribedinthissectionisanextensionofIrving’sclassicalStableRoommatesAlgorithm,see[3,2].Thereforeletusnowrecallthisalgorithminbrief.TheStableRoommatesAlgorithmstartswithaso-calledconsistentpreferenceproÿle(apreferenceproÿleisconsistent,ifforeachpairofparticipantsx;y∈N:x∈P(y)ifandonlyify∈P(x))anditconsistsoftwophases.Phase1isbasedonasequenceofproposals.Afreeparticipant,sayx,proposestotheÿrstparticipantinhislist,sayy.Asaresult,participantxbecomessemiengagedtoyandydeletesalltheparticipantsworsethanxfromhispreferencelist.Phase1terminateswhensomepreferencelistbecomesempty(thenthegiveninstanceoftheSRPhasnostablesolution)orwhentherearenomorefreeparticipantsleft.Ifonterminationeverypreferencelistcontainsjustoneentry,thenthereducedproÿleconstitutesastablesolution.Otherwise,thealgorithmproceedswithPhase2.
K.CechlÃarovÃa,S.FerkovÃa/DiscreteAppliedMathematics140(2004)1–175
InPhase2pairsofparticipantsarefurtherdeletedfromtheproÿlebymeansofrotationelimination.(Thenotionofarotationwillbeexplainedlater.)TheterminationconditionsforPhase2areidenticaltothoseforPhase1.DuetothefactthattheSCP,incontrasttotheSRP,considersparticipantsinroles,weneedtoincorporatecertainmodiÿcationsandrevisionstoIrving’soriginalalgo-rithm:
(1)Werequireastrictlyconsistentproÿleastheinputtothealgorithm.(2)Phase1is,apartfromtechnicaldetails,identicalwithPhase1ofIrving’salgorithm.(3)Phase2isanalogoustoIrving’sPhase2,butweintroduceanewelement,calledthedoublefavouriteelimination.
Everyproÿlegeneratedduringtheexecutionofthealgorithmwillbereferredtoasareducedproÿle.ForagivenreducedpreferenceproÿleTandaparticipantx,theÿrst,thesecondandthelastparticipantintherespectiverolesinx’spreferencelistPT(x)willbedenotedbyfT(x);sT(x)andlT(x),respectively.(Iftheproÿleisclearfromthecontext,thenthesubscriptsindicatingtheproÿlecanbeomitted.)
4.1.Strictconsistency
ThenotionofstrictconsistencyisageneralizationofconsistencydeÿnedfortheSRP.
Deÿnition5.Let{N;P}beaninstanceoftheSCP.WesaythatapreferenceproÿlePisstrictlyconsistent,ifforallparticipantsx;y∈Nandt∈{1;2}thefollowingholds:(i)xt∈P(y)ifandonlyify3?t∈P(x).(ii)ifyt;y3?t∈P(x)andyt??xy3?t,thenxt??yx3?t.
Thesecondconditionisimpliedbytheconsiderationthatifyt??xy3?t,andx3?t??yxt,thenthepair(xt;y3?t)isalwaysblockedbythepair(yt;x3?t).Weshallsupposethattheinputpreferenceproÿleisstrictlyconsistent(whichisotherwisetrivialtoachievebyappropriatedeletions).Inthealgorithmeverydeletion,e.g.deletionofxtfromP(y),alwaysmeansdeletionofthepair(xt;y3?t),i.e.y3?tisalsodeletedfromP(x)thuspreservingstrictconsistency.
Example3.Considertheinstance{N;P}oftheSCPwiththesetofparticipantsN={a;b;c;d;e;f}andthepreferenceproÿleP:
P(a)
P(b)
P(c)
P(d)=d1;f2;b1;d2;b2;e1;e2;f1,=c1;c2;a1;e1;e2;a2;d1;f2,==d2;e2;b1;e1;f1;b2,b2;f1;c1;a2;e1;f2;e2,
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 从刹五风活动谈传统民俗的传承与革新欧阳
- 【经管励志】北京五环公路.5
- 【经管励志】TOP SALES销售英雄
- 餐桌礼仪文化大全
- 永州江永女书文化产业的介绍与思考【ppt】
- 现代包装新动力_中国民俗元素
- 傳統家族試論(3)
- 【经管励志】文化水廊商业项目市场研究
- 2015(未来版)四年级品德与社会下册教案 家乡的民俗探秘 3
- 意大利宗教概况
- 马叉、秋千、斗鸡、斗蟋蟀——山东省第一批省级非物质文化遗产民俗风情概览
- 2014-2015学年新疆塔城地区托里县第三中学高二语文教案:第三单元《爱的心语》(3)(人教版选修《中国现代诗歌散文欣赏》)
- .挖掘民俗文化
- 中国民俗的起源于发展
- [宝典]选修诗歌散文文学常识
- 2014-2015学年新疆塔城地区托里县第三中学高二语文教案:第五单元《自然的年轮》(人教版选修《中国现代诗歌散文欣赏》)
- 【doc】明清以来苏州的社会生活与社会管理——从苏州碑刻的分类说起
- 【经管励志】康师傅新面上市推广方案
- 【经管励志】鸭鸭集
- 神奇的占卜
- 论蒙古族民俗及其在当代的变迁
- 智慧创民俗 民俗蕴思维
- 浅谈影响朝鲜民俗音乐的主要因素
- 甘肃文县:打造民俗特色乡村 保护民族传统文化--中华周易名家协会
- 2014-2015学年新疆塔城地区托里县第三中学高二语文教案:第一单元《春》(人教版选修《中国现代诗歌散文欣赏》)
- [精品]戏剧常识
- 民间饮食文化的传播与菜名的翻译
- 礼仪文书
- 民俗艺术宋江阵18
- [精华]人教版 高中语文选修——《中国现代诗歌散文观赏》第四单位 《伙头解牛》导学案
网友关注视频
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 人教版二年级下册数学
- 冀教版小学数学二年级下册第二单元《余数和除数的关系》
- 冀教版英语四年级下册第二课
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 冀教版英语三年级下册第二课
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 二年级下册数学第一课
- 人教版历史八年级下册第一课《中华人民共和国成立》
- 三年级英语单词记忆下册(沪教版)第一二单元复习
- 8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
- 二年级下册数学第二课
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 小学英语单词
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 外研版英语三起6年级下册(14版)Module3 Unit1
- 3月2日小学二年级数学下册(数一数)
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
- 飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 外研版八年级英语下学期 Module3
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 七年级英语下册 上海牛津版 Unit5
- 外研版英语七年级下册module3 unit2第一课时
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理