Comparison of Chiral Separation on Amylose and Cellulose
上传者:范木杰|上传时间:2015-05-08|密次下载
Comparison of Chiral Separation on Amylose and Cellulose
NotesBull. Korean Chem. Soc. 2003, Vol. 24, No. 2 239
Comparison of Chiral Separation on Amylose and CelluloseTris(3,5-dimethylphenylcarbamate)-Coated Zirconia in HPLC
In Whan Kim,a Jong Kwon Ryu,b Sung Duck Ahn,b Jung Hag Park,b,* Kwang-Pill Lee,c Jae Jeong Ryoo,c
Myung Ho Hyun,d Yoshio Okamoto,e Chiyo Yamamoto,e and Peter W. CarrfDept. of Chemical Education, Taegu University, Gyeongsan 712-714, Koreab
Dept. of Chemistry, Yeungnam University, Gyeongsan 712-749, Korea
c
Dept. of Chemical Education, Kyungpook National University, Daegu 702-701, Korea
d
Dept. of Chemistry, Pusan National University, Busan 609-735, Korea
e
Dept. of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
f
Dept. of Chemistry, University of Minnesota, MN 55455, USA
Received August 2, 2002Key Words : Chiral stationary phase, Amylose and cellulose tris(3,5-dimethylphenylcarbamate), Zirconia,HPLC
a
HPLC separation method based on chiral stationary phases(CSPs) has become one of the most attractive approaches tochiral separations, due to their simplicity for determiningoptical purity and easy extension to the semipreparative andpreparative scales.1 One of the major problems in usingmany CSPs is their narrow range of analyte applicability;they can only discriminate a limited number of specific typesof chemical entities, and it is frequently necessary toderivatize the compounds of interest to achieve separation.2On the other hand, the polysaccharide derivative-based CSPsdeveloped by Okamoto and co-workers3-6 have proven to behighly versatile and rugged. Okamoto reported the resolutionof 64% of 483 racemic mixtures on cellulose tris(3,5-di-methylphenyl carbamate) (CDMPC) and 80% were success-fully resolved on either the cellulose or the correspondingamylose carbamate (ADMPC).7
Fast method development, high efficiency, rapid resolutionof enantiomers, and robustness are the main criteria forchiral separation methods, especially in the pharmaceuticalindustry. These priorities require stable CSPs capable ofachieving baseline separations in the minimum time, whichultimately means high selectivity and efficiency. Silica is themost popular choice for support for HPLC stationary phaseligands due to the mechanical strength, wide range of particleand pore dimensions, pore structure and well-establishedsilane chemistry. However, silica and bonded phase ligandshave stability problems. Silica dissolves in mobile phasebuffered at or above pH 8 with loss of bonded phase ligandand column packing.8 Loss of organosilanes from the silicasurface via hydrolysis proceeds rapidly at low pH (<3) andat higher temperature (40oC). These deficiencies of thecolumn packing create problems of poor injection reproduci-bility, poor peak shape, and high backpressure, thus makingmethod development tasks difficult. Over the last decade,zirconia has received considerable attention as a stationaryphase support for HPLC.9,10 Zirconia particles are very
*
robust material; they show no detectable signs of dissolutionover the pH range from 1 to 14 and have been used forprolonged periods at temperatures up to 200oC in chromato-graphic separations. We recently reported preparation ofzirconia based CSPs with cellulose, bovine serum albuminand β-cyclodextrin for use in either normal or reversed-phase LC separation of chiral compounds.11-14
In this work we compared chromatographic performancesof chiral separation for ADMPC and CDMPC coated on 3-µm zirconia particles by measuring retention of a set ofracemic compounds on them. We used narrow-bore (1-mmID) columns that lead to many advantages such as lowconsumption of both mobile and stationary phases etc.15-17
Experimental Section
Reagents and materials. All reagents used for the prepara-tion of the stationary phase were reagent grade or better.Microcrystalline cellulose and amylose were purchased fromNakarai Chemicals (Japan). 3,5-Dimethylphenyl isocyanate,N,N-dimethylacetamide and pyridine were obtained fromAldrich (Milwaukee, USA). Zirconia, having a mean poresize of 30 nm and a mean particle diameter of 3 µm, wasobtained from ZirChrom Separations (Anoka, USA). Acetone,and 2-propanol were HPLC grade (J.T. Baker, Phillipsburg,USA). n-Hexane and tetrahydrofuran (THF) were purchasedfrom EM Sciences (Gibbstown, USA). The racemic com-pounds studied are shown in Figure 1. All are commerciallyavailable. Solutions at a concentration of 0.1 mg/mL wereprepared by dissolving the compounds in the mobile phase.Preparation of CDMPC and ADMPC. CDMPC andADMPC were synthesized as previously reported5,18 andwere characterized by elemental analyses, IR and NMRspectroscopy. The data indicated that hydroxyl groups ofcellulose and amylose were almost completely converted tothe corresponding carbamate groups.
Preparation of CDMPC and ADMPC coated zirconia.To dehydroxylate zirconia's surface, the particles were
Corresponding author. E-mail: jhpark@yu.ac.kr
240 Bull. Korean Chem. Soc. 2003, Vol. 24, No. 2Notes
Figure 1
内容需要下载文档才能查看. Structures of racemic compounds.
heated at 750oC for 5 h and cooled over phosphorus pent-oxide before use. Typically, 1.0 g of particles was suspendedin 10 mL of THF and sonicated under vacuum for 15 min toeliminate the air from the pores. Polymer loading of 4% byweight was chosen since this loading has been shown tooffer excellent chiral recognition ability and column effici-ency.11,13 The corresponding amount of CDMPC or ADMPCwas dissolved in 10 mL of THF and the solution was addedto the slurry of zirconia in THF using a syringe pump at arate of 0.04 mL/min (~4 h). The suspension was stirredovernight and then the solvent was slowly removed by rotaryevaporation at room temperature. Finally, the particles weredried in vacuum at 50oC.
Chromatography. Packing materials were suspended in a(1:1) hexane/2-propanol mixture and packed into 25 cm×1 mm (ID) columns using the downward slurry method atca. 7000 psi. 2-Propanol was employed as the displacing
solvent. A chromatographic system consisting of a Model7520 injector with a 0.5-µL internal loop (Rheodyne, CA,USA), a Model 530 column oven (Alltech, IL, USA) set at30oC and a Linear Model 200 UV/VIS detector (Alltech, IL,USA) with a 0.25-µL flowcell set at 254 nm was used. AHewlett-Packard (Avondale, CA, USA) Series 3365 integrat-ing recorder was used to record chromatograms. The mobilephases were mixtures of 2-propanol and hexane (2/98 or10/90 v/v%). They were filtered through a membrane filterof 0.5-µm pore size and degassed prior to use. The flow ratewas 200 µL/min. The dead time was estimated by using1,3,5-tri-tert-butylbenzene as unretained compound.19
Results and Discussion
The performance of a column packed with ADMPC and
内容需要下载文档才能查看CDMPC-zirconia is shown for the resolution of trifluoro-
Figure 2. Chromatograms for the separation of racemic trifluoroanthryl ethanol on (a) ADMPC- and (b) CDMPC-zirconia. Columndimension; 25×0.1 cm I.D. Mobile phase; 90:10 (v/v %) n-hexane: 2-propanol. Flow rate; 0.2 mL/min. Column temperature; 25 oC.
Notes
Table 1. Chromatographic Data on ADMPC- and CDMPC-Zirconiain Hexane/2-propanolCompound Mobile PhaseADMPCCDMPCNo.(v/v%)
k1aαbk1aαb190:100.861.550.892.75298:29.551.009.241.10398:28.971.080.871.86498:23.201.062.801.18598:24.341.002.591.15698:210.021.076.771.1690:100.581.090.691.00798:23.171.072.871.08898:21.822.411.771.1190:100.471.870.581.17990:107.821.307.821.301098:20.461.340.733.0190:100.251.200.352.231198:20.861.500.762.6290:100.371.350.252.121298:215.061.226.011.001390:103.781.362.081.0014
98:21.681.271.181.0090:10
0.50
1.04
0.30
1.00
a
Retention factor for the first eluting enantiomer. b
内容需要下载文档才能查看Selectivity factor.
anthryl ethanol in 90:10(v/v) hexane/2-propanol (Fig. 2).Retention factors (k) for this analyte under the conditionsused are small but its enantiomers are baseline resolved withseparation factors of 1.55 and 2.75 on ADMPC- and CDMPC-zirconia, respectively. Separation data of twelve racemiccompounds are listed in Table 1. Most of the racemiccompounds studied were well resolved on the two CSPs.Retention and chiral selectivities of ADMPC- and CDMPC-zirconia vary extensively with the type of chiral compoundsas can be seen in Figure 3. For seven alcohols (1-7) investi-gated selectivity factors are in general greater on CDMPCthan ADMPC while retention is always longer on ADMPCthan CDMPC. For two bases (8, 9) retention values aresimilar on the two columns but chiral selectivity is better onADMPC-zirconia than on CDMPC-zirconia. For two cyclicethers (10-11) retention is very short on both columns butselectivity of CDMPC is much greater than that for ADMPC.For two lactones and cyanide (12-14) both retention andselectivity are greater on ADMPC than on CDMPC. TheCDMPC- and ADMPC-coated zirconia CSPs show comple-mentary chiral recognition capability for types of theracemates studied.
The stability of the polysaccharide-zirconia columns werechecked by measuring retention factor of the first elutingenantiomer of Tröger's base after passage of every 500column volume of the eluent through the columns. Therewas only less than 2% decrease in retention factor of the testsolute for the both columns after 6,000 column volume. Thehigh enantioselectivity of the zirconia CSPs may allow forthe use of a shorter column for reduced analysis time andsolvent consumption.
Bull. Korean Chem. Soc. 2003, Vol. 24, No. 2 241
Figure 3. Comparison of retention and chiral selectivity ofADMPC- and CDMPC-zirconia. When separations were carriedout at two different mobile phase compositions results for 98:2 n-hexane: 2-propanol were plotted. Solid bar, ADMPC; Open bar,CDMPC. Solutes: 1, trifluoroanthryl ethanol; 2, α-trifluoromethyl-benzyl alcohol; 3, α-methyl-1-naphthalene methanol; 4, 1-phenyl-1-propanol; 5, 1-phenyl-2-propanol; 6, 3-phenyl-1-butanol; 7, 1-phenyl-1-butanol; 8, Tröger's base; 9, 3,5-dinitrobenzoyl-α-methyl-benzylamine; 10, trans-stilbene oxide; 11, 4-phenyl-1,3-dioxane;12, γ-phenyl-γ-butyrolactone; 13, γ-(2-naphthyl)-γ-butyrolactone;14, α-methylbenzyl cyanide.
Acknowledgment. This work was supported by the KoreaResearch Foundation grant (2001-015-DP0288). IWKacknowledges financial support by the Taegu Universityresearch grant (2002).
References
1.Francotte, E. In Chiral Separations: Applications and Technology;
Ahuja, S., Ed.; American Chemical Society: Washington, 1997;Chapter 5.
2.Dingenen, J. In A Practical Approach to Chiral Separations by
Liquid Chromatography; Subramanian, G., Ed.; VCH: New York,1994; Chapter 6.
3.Okamoto, Y.; Kawashima, M.; Yamamoto, K.; Hatada, K. Chem.
Lett. 1984, 739. 4.Okamoto, Y.; Kawashima, M.; Hatada, K. J. Am. Chem. Soc.
1984, 106, 5357.
5.Okamoto, Y.; Kawashima, M.; Hatada, K. J. Chromatogr. 1986,
363, 173.
6.Okamoto, Y.; Yashima, E. Angew. Chem. Int. Ed. 1998, 37, 1020.
242 Bull. Korean Chem. Soc. 2003, Vol. 24, No. 2
7.Okamoto, Y.; Kaida, Y.; Aburatani, R.; Hatada, K. In Chiral
Separations by Liquid Chromatography; Ahuja, S., Ed.; ACSSymposium Series 471, American Chemical Society: Washington,DC, 1991; pp 101-113. 8.Kirkland, J. J.; van Straten, M. A.; Claessans, H. A. J.
Chromatogr. 1995, 691, 3. 9.Nawrocki, J.; Dunlap, C. J.; Carr, P. W.; Blackwell, J. A.
Biotechnol. Prog. 1994, 10, 561.
10.Jackson, P. T.; Carr, P. W. Chemtech. Oct. 29, 1998.11.Castells, C. B.; Carr, P. W. Anal. Chem. 1999, 71, 3013.12.Castells, C. B.; Carr, P. W. J. Chromatogr. 2000, 904, 17.
13.Park, J. H.; Ryu, J. K.; Park, J. K.; McNeff, C. V.; Carr, P. W.
Chromatographia 2001, 53, 405.
Notes
14.Park, S. Y.; Park, J. K.; Park, J. H.; McNeff, C. V.; Carr, P. W.
Microchem. J. 2001, 70, 179.
15.Hôrvath, C. G.; Preiss, B. A.; Lipsky, S. R. Anal. Chem. 1967, 39,
1422.
16.Scott, R. P. W.; Kucera, P. J. Chromatogr. 1976, 125, 251.
17.Ishii, D. In Introduction to Microscale High-Performance
Liquid Chromatography; Ishii, D., Ed.; VCH: Weinheim, 1988;Chapter 1.
18.Okamoto, Y.; Aburatani, R.; Fukumoto, T.; Hatada, K. Chem. Lett.
1987, 1857.
19.Koller, H.; Rimbock, K. H.; Mannschreck, A. J. Chromatogr.
1983, 282, 89.
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 南昌西班牙语培训哪里好
- 常用“阿语、汉语”对照手册
- 2017年5月13日托福口语及写作范文
- XXX地区危险化学品运输泄漏事故演练脚本
- 血防健康教育责任状
- 论现代行政过程中的行政法律关系
- 2017年5月换题季-雅思口语新题解析
- 增强马克思主义研究的整体性
- 三个儿子Word
- 关于请求按政策办理养老保险的补充说明
- 昆明市成立5个市级地条钢排查督查工作组 督查地条钢企业
- 英语(语法规律)
- 发电生产专项指标奖惩管理办法
- 我国国家公园景区管理的启示和借鉴
- 有关景区管理的升级制度保证的几个方面
- 公司有效证件使用管理办法
- 大连雅思培训之雅思大作文如此构思才引好感
- 项目责任人管理办法
- 客服人员话术及常出问题的解决办法
- 物资购置申请表
- 行政领导学小抄
- 西安西班牙语培训哪里好
- 周口店北京人遗址景区管理提升建设方案-巅峰智业
- 房地产产权登记制度
- 工程巡查管理规定
- 操作规程考核记录
- 第五节、破坏金融管理秩序罪Word
- 两司法所联手调成一起工亡事故
- 三级综合医院评审标准实施细则第六章第九节医学装备管理
- 大连托福培训之单词原来这样背--聪明的动物
网友关注视频
- 北师大版数学四年级下册第三单元第四节街心广场
- 苏教版二年级下册数学《认识东、南、西、北》
- 苏科版八年级数学下册7.2《统计图的选用》
- 二年级下册数学第二课
- 七年级英语下册 上海牛津版 Unit3
- 二年级下册数学第三课 搭一搭⚖⚖
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 冀教版小学数学二年级下册第二单元《余数和除数的关系》
- 化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
- 3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 《小学数学二年级下册》第二单元测试题讲解
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 三年级英语单词记忆下册(沪教版)第一二单元复习
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 冀教版英语四年级下册第二课
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 沪教版八年级下册数学练习册21.3(3)分式方程P17
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
- 外研版八年级英语下学期 Module3
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
- 3月2日小学二年级数学下册(数一数)
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理