教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> > 化学> Comparison of Chiral Separation on Amylose and Cellulose

Comparison of Chiral Separation on Amylose and Cellulose

上传者:范木杰
|
上传时间:2015-05-08
|
次下载

Comparison of Chiral Separation on Amylose and Cellulose

NotesBull. Korean Chem. Soc. 2003, Vol. 24, No. 2 239

Comparison of Chiral Separation on Amylose and CelluloseTris(3,5-dimethylphenylcarbamate)-Coated Zirconia in HPLC

In Whan Kim,a Jong Kwon Ryu,b Sung Duck Ahn,b Jung Hag Park,b,* Kwang-Pill Lee,c Jae Jeong Ryoo,c

Myung Ho Hyun,d Yoshio Okamoto,e Chiyo Yamamoto,e and Peter W. CarrfDept. of Chemical Education, Taegu University, Gyeongsan 712-714, Koreab

Dept. of Chemistry, Yeungnam University, Gyeongsan 712-749, Korea

c

Dept. of Chemical Education, Kyungpook National University, Daegu 702-701, Korea

d

Dept. of Chemistry, Pusan National University, Busan 609-735, Korea

e

Dept. of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

f

Dept. of Chemistry, University of Minnesota, MN 55455, USA

Received August 2, 2002Key Words : Chiral stationary phase, Amylose and cellulose tris(3,5-dimethylphenylcarbamate), Zirconia,HPLC

a

HPLC separation method based on chiral stationary phases(CSPs) has become one of the most attractive approaches tochiral separations, due to their simplicity for determiningoptical purity and easy extension to the semipreparative andpreparative scales.1 One of the major problems in usingmany CSPs is their narrow range of analyte applicability;they can only discriminate a limited number of specific typesof chemical entities, and it is frequently necessary toderivatize the compounds of interest to achieve separation.2On the other hand, the polysaccharide derivative-based CSPsdeveloped by Okamoto and co-workers3-6 have proven to behighly versatile and rugged. Okamoto reported the resolutionof 64% of 483 racemic mixtures on cellulose tris(3,5-di-methylphenyl carbamate) (CDMPC) and 80% were success-fully resolved on either the cellulose or the correspondingamylose carbamate (ADMPC).7

Fast method development, high efficiency, rapid resolutionof enantiomers, and robustness are the main criteria forchiral separation methods, especially in the pharmaceuticalindustry. These priorities require stable CSPs capable ofachieving baseline separations in the minimum time, whichultimately means high selectivity and efficiency. Silica is themost popular choice for support for HPLC stationary phaseligands due to the mechanical strength, wide range of particleand pore dimensions, pore structure and well-establishedsilane chemistry. However, silica and bonded phase ligandshave stability problems. Silica dissolves in mobile phasebuffered at or above pH 8 with loss of bonded phase ligandand column packing.8 Loss of organosilanes from the silicasurface via hydrolysis proceeds rapidly at low pH (<3) andat higher temperature (40oC). These deficiencies of thecolumn packing create problems of poor injection reproduci-bility, poor peak shape, and high backpressure, thus makingmethod development tasks difficult. Over the last decade,zirconia has received considerable attention as a stationaryphase support for HPLC.9,10 Zirconia particles are very

*

robust material; they show no detectable signs of dissolutionover the pH range from 1 to 14 and have been used forprolonged periods at temperatures up to 200oC in chromato-graphic separations. We recently reported preparation ofzirconia based CSPs with cellulose, bovine serum albuminand β-cyclodextrin for use in either normal or reversed-phase LC separation of chiral compounds.11-14

In this work we compared chromatographic performancesof chiral separation for ADMPC and CDMPC coated on 3-µm zirconia particles by measuring retention of a set ofracemic compounds on them. We used narrow-bore (1-mmID) columns that lead to many advantages such as lowconsumption of both mobile and stationary phases etc.15-17

Experimental Section

Reagents and materials. All reagents used for the prepara-tion of the stationary phase were reagent grade or better.Microcrystalline cellulose and amylose were purchased fromNakarai Chemicals (Japan). 3,5-Dimethylphenyl isocyanate,N,N-dimethylacetamide and pyridine were obtained fromAldrich (Milwaukee, USA). Zirconia, having a mean poresize of 30 nm and a mean particle diameter of 3 µm, wasobtained from ZirChrom Separations (Anoka, USA). Acetone,and 2-propanol were HPLC grade (J.T. Baker, Phillipsburg,USA). n-Hexane and tetrahydrofuran (THF) were purchasedfrom EM Sciences (Gibbstown, USA). The racemic com-pounds studied are shown in Figure 1. All are commerciallyavailable. Solutions at a concentration of 0.1 mg/mL wereprepared by dissolving the compounds in the mobile phase.Preparation of CDMPC and ADMPC. CDMPC andADMPC were synthesized as previously reported5,18 andwere characterized by elemental analyses, IR and NMRspectroscopy. The data indicated that hydroxyl groups ofcellulose and amylose were almost completely converted tothe corresponding carbamate groups.

Preparation of CDMPC and ADMPC coated zirconia.To dehydroxylate zirconia's surface, the particles were

Corresponding author. E-mail: jhpark@yu.ac.kr

240 Bull. Korean Chem. Soc. 2003, Vol. 24, No. 2Notes

Figure 1

内容需要下载文档才能查看

. Structures of racemic compounds.

heated at 750oC for 5 h and cooled over phosphorus pent-oxide before use. Typically, 1.0 g of particles was suspendedin 10 mL of THF and sonicated under vacuum for 15 min toeliminate the air from the pores. Polymer loading of 4% byweight was chosen since this loading has been shown tooffer excellent chiral recognition ability and column effici-ency.11,13 The corresponding amount of CDMPC or ADMPCwas dissolved in 10 mL of THF and the solution was addedto the slurry of zirconia in THF using a syringe pump at arate of 0.04 mL/min (~4 h). The suspension was stirredovernight and then the solvent was slowly removed by rotaryevaporation at room temperature. Finally, the particles weredried in vacuum at 50oC.

Chromatography. Packing materials were suspended in a(1:1) hexane/2-propanol mixture and packed into 25 cm×1 mm (ID) columns using the downward slurry method atca. 7000 psi. 2-Propanol was employed as the displacing

solvent. A chromatographic system consisting of a Model7520 injector with a 0.5-µL internal loop (Rheodyne, CA,USA), a Model 530 column oven (Alltech, IL, USA) set at30oC and a Linear Model 200 UV/VIS detector (Alltech, IL,USA) with a 0.25-µL flowcell set at 254 nm was used. AHewlett-Packard (Avondale, CA, USA) Series 3365 integrat-ing recorder was used to record chromatograms. The mobilephases were mixtures of 2-propanol and hexane (2/98 or10/90 v/v%). They were filtered through a membrane filterof 0.5-µm pore size and degassed prior to use. The flow ratewas 200 µL/min. The dead time was estimated by using1,3,5-tri-tert-butylbenzene as unretained compound.19

Results and Discussion

The performance of a column packed with ADMPC and

内容需要下载文档才能查看

CDMPC-zirconia is shown for the resolution of trifluoro-

Figure 2. Chromatograms for the separation of racemic trifluoroanthryl ethanol on (a) ADMPC- and (b) CDMPC-zirconia. Columndimension; 25×0.1 cm I.D. Mobile phase; 90:10 (v/v %) n-hexane: 2-propanol. Flow rate; 0.2 mL/min. Column temperature; 25 oC.

Notes

Table 1. Chromatographic Data on ADMPC- and CDMPC-Zirconiain Hexane/2-propanolCompound Mobile PhaseADMPCCDMPCNo.(v/v%)

k1aαbk1aαb190:100.861.550.892.75298:29.551.009.241.10398:28.971.080.871.86498:23.201.062.801.18598:24.341.002.591.15698:210.021.076.771.1690:100.581.090.691.00798:23.171.072.871.08898:21.822.411.771.1190:100.471.870.581.17990:107.821.307.821.301098:20.461.340.733.0190:100.251.200.352.231198:20.861.500.762.6290:100.371.350.252.121298:215.061.226.011.001390:103.781.362.081.0014

98:21.681.271.181.0090:10

0.50

1.04

0.30

1.00

a

Retention factor for the first eluting enantiomer. b

内容需要下载文档才能查看

Selectivity factor.

anthryl ethanol in 90:10(v/v) hexane/2-propanol (Fig. 2).Retention factors (k) for this analyte under the conditionsused are small but its enantiomers are baseline resolved withseparation factors of 1.55 and 2.75 on ADMPC- and CDMPC-zirconia, respectively. Separation data of twelve racemiccompounds are listed in Table 1. Most of the racemiccompounds studied were well resolved on the two CSPs.Retention and chiral selectivities of ADMPC- and CDMPC-zirconia vary extensively with the type of chiral compoundsas can be seen in Figure 3. For seven alcohols (1-7) investi-gated selectivity factors are in general greater on CDMPCthan ADMPC while retention is always longer on ADMPCthan CDMPC. For two bases (8, 9) retention values aresimilar on the two columns but chiral selectivity is better onADMPC-zirconia than on CDMPC-zirconia. For two cyclicethers (10-11) retention is very short on both columns butselectivity of CDMPC is much greater than that for ADMPC.For two lactones and cyanide (12-14) both retention andselectivity are greater on ADMPC than on CDMPC. TheCDMPC- and ADMPC-coated zirconia CSPs show comple-mentary chiral recognition capability for types of theracemates studied.

The stability of the polysaccharide-zirconia columns werechecked by measuring retention factor of the first elutingenantiomer of Tröger's base after passage of every 500column volume of the eluent through the columns. Therewas only less than 2% decrease in retention factor of the testsolute for the both columns after 6,000 column volume. Thehigh enantioselectivity of the zirconia CSPs may allow forthe use of a shorter column for reduced analysis time andsolvent consumption.

Bull. Korean Chem. Soc. 2003, Vol. 24, No. 2 241

Figure 3. Comparison of retention and chiral selectivity ofADMPC- and CDMPC-zirconia. When separations were carriedout at two different mobile phase compositions results for 98:2 n-hexane: 2-propanol were plotted. Solid bar, ADMPC; Open bar,CDMPC. Solutes: 1, trifluoroanthryl ethanol; 2, α-trifluoromethyl-benzyl alcohol; 3, α-methyl-1-naphthalene methanol; 4, 1-phenyl-1-propanol; 5, 1-phenyl-2-propanol; 6, 3-phenyl-1-butanol; 7, 1-phenyl-1-butanol; 8, Tröger's base; 9, 3,5-dinitrobenzoyl-α-methyl-benzylamine; 10, trans-stilbene oxide; 11, 4-phenyl-1,3-dioxane;12, γ-phenyl-γ-butyrolactone; 13, γ-(2-naphthyl)-γ-butyrolactone;14, α-methylbenzyl cyanide.

Acknowledgment. This work was supported by the KoreaResearch Foundation grant (2001-015-DP0288). IWKacknowledges financial support by the Taegu Universityresearch grant (2002).

References

1.Francotte, E. In Chiral Separations: Applications and Technology;

Ahuja, S., Ed.; American Chemical Society: Washington, 1997;Chapter 5.

2.Dingenen, J. In A Practical Approach to Chiral Separations by

Liquid Chromatography; Subramanian, G., Ed.; VCH: New York,1994; Chapter 6.

3.Okamoto, Y.; Kawashima, M.; Yamamoto, K.; Hatada, K. Chem.

Lett. 1984, 739. 4.Okamoto, Y.; Kawashima, M.; Hatada, K. J. Am. Chem. Soc.

1984, 106, 5357.

5.Okamoto, Y.; Kawashima, M.; Hatada, K. J. Chromatogr. 1986,

363, 173.

6.Okamoto, Y.; Yashima, E. Angew. Chem. Int. Ed. 1998, 37, 1020.

242 Bull. Korean Chem. Soc. 2003, Vol. 24, No. 2

7.Okamoto, Y.; Kaida, Y.; Aburatani, R.; Hatada, K. In Chiral

Separations by Liquid Chromatography; Ahuja, S., Ed.; ACSSymposium Series 471, American Chemical Society: Washington,DC, 1991; pp 101-113. 8.Kirkland, J. J.; van Straten, M. A.; Claessans, H. A. J.

Chromatogr. 1995, 691, 3. 9.Nawrocki, J.; Dunlap, C. J.; Carr, P. W.; Blackwell, J. A.

Biotechnol. Prog. 1994, 10, 561.

10.Jackson, P. T.; Carr, P. W. Chemtech. Oct. 29, 1998.11.Castells, C. B.; Carr, P. W. Anal. Chem. 1999, 71, 3013.12.Castells, C. B.; Carr, P. W. J. Chromatogr. 2000, 904, 17.

13.Park, J. H.; Ryu, J. K.; Park, J. K.; McNeff, C. V.; Carr, P. W.

Chromatographia 2001, 53, 405.

Notes

14.Park, S. Y.; Park, J. K.; Park, J. H.; McNeff, C. V.; Carr, P. W.

Microchem. J. 2001, 70, 179.

15.Hôrvath, C. G.; Preiss, B. A.; Lipsky, S. R. Anal. Chem. 1967, 39,

1422.

16.Scott, R. P. W.; Kucera, P. J. Chromatogr. 1976, 125, 251.

17.Ishii, D. In Introduction to Microscale High-Performance

Liquid Chromatography; Ishii, D., Ed.; VCH: Weinheim, 1988;Chapter 1.

18.Okamoto, Y.; Aburatani, R.; Fukumoto, T.; Hatada, K. Chem. Lett.

1987, 1857.

19.Koller, H.; Rimbock, K. H.; Mannschreck, A. J. Chromatogr.

1983, 282, 89.

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

外研版八年级英语下学期 Module3
8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
河南省名校课堂七年级下册英语第一课(2020年2月10日)
人教版二年级下册数学
冀教版小学英语五年级下册lesson2教学视频(2)
3月2日小学二年级数学下册(数一数)
七年级下册外研版英语M8U2reading
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
冀教版小学数学二年级下册第二单元《租船问题》
沪教版八年级下册数学练习册21.3(2)分式方程P15
外研版英语七年级下册module3 unit2第二课时
沪教版八年级下次数学练习册21.4(2)无理方程P19
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
苏科版八年级数学下册7.2《统计图的选用》
小学英语单词
北师大版小学数学四年级下册第15课小数乘小数一
沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
《空中课堂》二年级下册 数学第一单元第1课时
外研版英语三起6年级下册(14版)Module3 Unit1
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
外研版英语三起5年级下册(14版)Module3 Unit2
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
外研版英语三起5年级下册(14版)Module3 Unit1
冀教版小学数学二年级下册第二单元《余数和除数的关系》
青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省