Perfectly matched layers for transient elastodynamics of unbounded domains
上传者:陈锋军|上传时间:2015-05-08|密次下载
Perfectly matched layers for transient elastodynamics of unbounded domains
INTERNATIONALJOURNALFORNUMERICALMETHODSINENGINEERINGInt.J.Numer.Meth.Engng2004;59:1039–1074(DOI:10.1002/nme.896)
Perfectlymatchedlayersfortransientelastodynamicsofunboundeddomains
UshnishBasuandAnilK.Chopra?,?
DepartmentofCivilandEnvironmentalEngineering,UniversityofCalifornia,Berkeley,CA94720,U.S.A.
SUMMARY
Oneapproachtothenumericalsolutionofawaveequationonanunboundeddomainusesaboundeddomainsurroundedbyanabsorbingboundaryorlayerthatabsorbswavespropagatingoutwardfromtheboundeddomain.Aperfectlymatchedlayer(PML)isanunphysicalabsorbinglayermodelforlinearwaveequationsthatabsorbs,almostperfectly,outgoingwavesofallnon-tangentialangles-of-incidenceandofallnon-zerofrequencies.Inarecentwork[ComputerMethodsinAppliedMechanicsandEngineering2003;192:1337–1375],theauthorspresented,interalia,time-harmonicgoverningequationsofPMLsforanti-planeandforplane-strainmotionof(visco-)elasticmedia.Thispaperpresents(a)correspondingtime-domain,displacement-basedgoverningequationsofthesePMLsand(b)displacement-based?niteelementimplementationsoftheseequations,suitablefordirecttransientanalysis.The?niteelementimplementationoftheanti-planePMLisfoundtobesymmetric,whereasthatoftheplane-strainPMLisnot.Numericalresultsarepresentedfortheanti-planemotionofasemi-in?nitelayeronarigidbase,andfortheclassicalsoil–structureinteractionproblemsofarigidstrip-footingon(i)ahalf-plane,(ii)alayeronahalf-plane,and(iii)alayeronarigidbase.TheseresultsdemonstratethehighaccuracyachievablebyPMLmodelsevenwithsmallboundeddomains.Copyright?2004JohnWiley&Sons,Ltd.
KEYWORDS:perfectlymatchedlayers(PML);absorbingboundary;scalarwaveequation;elasticwaves;transientanalysis;?niteelements(FE)
1.INTRODUCTION
Thesolutionoftheelastodynamicwaveequationoveranunboundeddomain?ndsapplicationsinsoil–structureinteractionanalysis[1]andinthesimulationofearthquakegroundmotion[2].Theneedforrealisticmodelsoftencompelsanumericalsolutionusingaboundeddomain,alongwithanarti?cialabsorbingboundaryorlayerthatsimulatestheunboundeddomainbeyond.Correspondenceto:AnilK.Chopra,DepartmentofCivilandEnvironmentalEngineering,707DavisHall,UniversityofCalifornia,Berkeley,CA94720,U.S.A.?E-mail:chopra@ce.berkeley.edu
Contract/grantsponsor:WaterwaysExperimentStation,U.S.ArmyCorpsofEngineers;contract/grantnumber:DACW39-98-K-0038
Copyright?2004JohnWiley&Sons,Ltd.Received18December2002Revised25April2003Accepted28May2003
1040U.BASUANDA.K.CHOPRA
Ofparticularimportanceareabsorbingboundariesthatallowtransientanalysis,facilitatingincorporationofnon-linearitywithintheboundeddomain.
Classicalapproximateabsorbingboundaries[3–6],althoughlocalandcheaplycomputed,mayrequirelargeboundeddomainsforsatisfactoryaccuracy,sincetypicallytheyabsorbinci-dentwaveswellonlyoverasmallrangeofangles-of-incidence.Forsatisfactoryperformance,approximateabsorbinglayermodels[7,8]requirecarefulformulationandimplementationtoeliminatespuriousre?ectionsfromtheinterfacetothelayer.Thesuperpositionboundary[9]iscumbersomeandexpensivetoimplement,andin?niteelements[10,11]typicallyrequireproblem-dependentassumptionsonthewavemotion.Rigorousabsorbingboundariesaretyp-icallyformulatedinthefrequencydomain[12–14];correspondingtime-domainformulations[15–17]maybecomputationallyexpensiveandmaynotbeapplicabletoallproblemsofinterest.Thedif?cultyinobtainingasuf?cientlyaccurate,yetnot-too-expensivemodeloftheun-boundeddomaindirectlyinthetimedomainhasledtotheuseoftraditionalfrequency-domainmodelstowardstime-domainanalysis.Onesuchmethoduseshybridfrequency–time-domainanalysis[1,18],iteratingbetweenthefrequencyandtimedomainsinordertoaccountfornon-linearityintheboundeddomain;thiscomputationallydemandingmethodrequirescare-fulimplementationtoensurestability.Anotherapproachreplacesthenon-linearsystembyanequivalentlinearsystem[19]whosestiffnessanddampingvaluesarecompatiblewiththeeffectivestrainamplitudesinthesystem.Athirdapproach[20–22]approximatesthefrequency-domainDtNmapofasystembyarationalfunctionandusesthisapproximationtoobtainatime-domainsystemthatistemporallylocal.Althoughthisapproachisconceptuallyattractive,computationofanaccuraterational-functionapproximationmaybeexpensive.
Aperfectlymatchedlayer(PML)isanabsorbinglayermodelforlinearwaveequationsthatabsorbs,almostperfectly,propagatingwavesofallnon-tangentialangles-of-incidenceandofallnon-zerofrequencies.Firstintroducedinthecontextofelectromagneticwaves[23,24],theconceptofaPMLhasbeenappliedtootherlinearwaveequations[25–27],includingtheelastodynamicwaveequation[28,29].Inarecentwork[30],theauthorshavedevelopedtheconceptofaPMLinthecontextoffrequency-domainelastodynamics,utilisinginsightsobtainedfromPMLsinelectromagnetics,andillustrateditusingtheone-dimensionalrodonelasticfoundationandtheanti-planemotionofatwo-dimensionalcontinuum,governedbytheHelmholtzequation.ExtendingthePMLconcepttothedisplacementformulationofplane-strainandthree-dimensionalmotion,theyhavealsopresentedanoveldisplacement-based,symmetric?niteelementimplementationofsuchaPML.
Theobjectiveofthispaperistopresent(a)time-domain,displacement-based,equationsofthePMLsforanti-planeandforplane-strainmotionofa(visco-)elasticmedium,and(b)displacement-based?niteelement(FE)implementationsoftheseequations.Thefrequency-domainPMLequationsfromReference[30]are?rsttransformedintothetimedomainbyaspecialchoiceoftheco-ordinate-stretchingfunctions,andthenthesetime-domainequationsareimplementednumericallybyastraightforward?niteelementapproach.Time-domainnumericalresultsarepresentedfortheanti-planemotionofasemi-in?nitelayeronrigidbaseandfortheclassicalsoil–structureinteractionproblemsofarigidstrip-footingon(i)ahalf-plane,(ii)alayeronahalf-plane,and(iii)alayeronarigidbase.Additionally,theadequacyofthespecialchoiceofthestretchingfunctionstowardsattenuatingevanescentwavesisinvestigatedthroughnumericalresultsinthefrequencydomain.ThispaperpresentsonlyabriefexplanationoftheconceptofaPML;adetaileddevelopment,andthederivationofthefrequency-domainequationsarepresentedinReference[30].
Copyright?2004JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng2004;59:1039–1074
TRANSIENTELASTODYNAMICSOFUNBOUNDEDDOMAINS1041
Tensorialandindicialnotationwillbeusedinterchangeablyinthispaper;thesummationconventionwillbeassumedunlessanexplicitsummationisusedoritismentionedotherwise.Anitalicboldfacesymbolwillrepresentavector,e.g.x,anuprightboldfacesymbolwillrepresentatensororitsmatrixinaparticularorthonormalbasis,e.g.D,andasans-serifboldfacesymbolwillrepresentafourth-ordertensor,e.g.C;thecorrespondinglightfacesymbolswithRomansubscriptswilldenotecomponentsofthetensor,matrixorvector.Anoverbarover
¯,denotesatime-harmonicquantity;suchdistinguishingnotationwasnotasymbol,e.g.u
employedinReference[30]becausetheentireanalysiswasinthefrequencydomain.
2.ANTI-PLANEMOTION
2.1.Elasticmedium
Consideratwo-dimensionalhomogeneousisotropicelasticcontinuumundergoingonlyanti-planedisplacementsintheabsenceofbodyforces.Forsuchmotion,ifthex3-directionistakentopointoutoftheplane,onlythe31-and32-componentsofthethree-dimensionalstressandstraintensorsarenon-zero.Thedisplacementsu(x,t)aregovernedbythefollowingequations(i∈{1,2}):
??*??i=??u¨ii
??i=??εi
εi=*u
i(1a)(1b)(1c)
where??istheshearmodulusofthemediumand??itsmassdensity;??iandεirepresentthe3i-componentsofthestressandstraintensors.
Onanunboundeddomain,Equation(1)admitsplaneshearwavesolutions[31]oftheform
u(x,t)=exp[?iksx·p]exp(i??t)
whereks=??/csisthewavenumber,withwavespeedcs=denotingthepropagationdirection.
2.2.Perfectlymatchedlayer
ThediscussionofPMLpresentedhereisasynopsisofthecorrespondingdevelopmentinReference[30].Thesummationconventionisabandonedinthissection.
ConsiderawaveoftheforminEquation(2)propagatinginanunboundedelasticdomain,thex1–x2plane,governedbyEquation(1).Theobjectiveofde?ningaperfectlymatchedlayer(PML)istosimulatesuchwavepropagationbyusingacorrespondingboundeddomain.
ThegoverningequationsofaPMLaremostnaturallyde?nedinthefrequencydomain,throughfrequency-dependent,complex-valuedco-ordinatestretching.Assumingharmonictime-dependenceofthedisplacement,stressandstrain,e.g.u(x,t)=u(¯x)exp(i??t),with??theCopyright?2004JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng2004;59:1039–1074(2)√andpisaunitvector
1042U.BASUANDA.K.CHOPRA
frequencyofexcitation,thegoverningequationsofthePMLforanti-planemotionare
??
i1*??¯i=???2??u¯i(xi)i
¯i??¯i=??ε
ε¯i=¯1*u
i(xi)*xi(3a)(3b)(3c)
where??iarenowhere-zero,continuous,complex-valuedco-ordinatestretchingfunctions.Ifthestretchingfunctionsarechosenas
??i(xi):=1?ifi(xi)
ks(4)
intermsofreal-valued,continuousattenuationfunctionsfi,thenEquation(3)admitssolutionsoftheform??????u(¯x,t)=exp?Fi(xi)piexp[?iksx·p](5)i
where
Fi(xi):=??0xifi(??)d??(6)
Thus,ifFi(xi)>0andpi>0,thenthewavesolutionadmittedinthePMLmediumisoftheformoftheelastic-mediumsolution[Equation(2)],butwithanimposedspatialattenuation.Thisattenuationisoftheformexp[?Fi(xi)pi]inthexi-direction,andisindependentofthefrequencyifpiis.
Considerreplacingthex1–x2planeby BD∪ PM,asshowninFigure1,where BDisa‘bounded’(truncated)domain,governedbyEquation(1),and PMisaPML,governedbyEquation(3),with??1oftheforminEquation(4),satisfyingf1(0)=0,and??2≡1.Themediumin BDbeingaspecialPMLmedium[??i(xi)≡1],thematchingofstretchingfunctionsatthe BD– PMinterfacemakesthePML‘perfectlymatched’to BD:wavestravellingoutwardfromtheboundeddomainareabsorbedintothePMLwithoutanyre?ectionfromthe BD– PMinterface.AnoutgoingwaveenteringthePMLisattenuatedinthelayerandthenre?ectedbackfromthe?xedendtowardstheboundeddomain.Iftheincidentwavehasunitamplitude,thentheamplitude|R|ofthere?ectedwaveasitexitsthePMLisgivenby
|R|=exp[?2F1(LP)cos??](7)
Thisre?ected-waveamplitudeiscontrolledbythechoiceoftheattenuationfunctionandthedepthofthelayer,andcanbemadearbitrarilysmallfornon-tangentiallyincidentwaves.Becausesuchoutgoingwavesinsuchasystemwillbeonlyminimallyre?ectedbacktowardstheinterface,thisbounded-domain-PMLsystemisanappropriatemodelfortheunboundedx1–x2plane.
Copyright?2004JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng2004;59:1039–1074
TRANSIENTELASTODYNAMICSOFUNBOUNDEDDOMAINS
内容需要下载文档才能查看1043
Figure1.APMLadjacenttoa‘bounded’(truncated)domainattenuatesandre?ectsbackanoutgoingplanewave.
2.3.Time-domainequationsforthePML
ConsidertworectangularCartesianco-ordinatesystemsfortheplaneasfollows:(1)an{xi}system,withrespecttoanorthonormalbasis{ei},and(2)an{xi??}system,withrespectto??},withthetwobasesrelatedbytherotation-of-basismatrixQ,anotherorthonormalbasis{ei??.Equation(3)canbere-writtenintermsoftheco-ordinatesx??withcomponentsQij:=ei·ejibyreplacingxibyxi??throughout,representingamediumwhereinwavesareattenuatedinthe??ande??directions,ratherthanintheeandedirectionsasinEquation(3).Thisresultante1122equationcanbetransformedtothebasis{ei}toobtain[30]
????????·(??¯)=???2??[??1(x1)??2(x2)]u¯(8a)
(8b)
(8c)??¯=??(1+2ia0??)??¯??¯=??(?u)¯
where
??
??¯:=??¯1
??¯2??,??¯:=??ε¯1ε¯2??,??*??????*x??1?:=?*???????*x2(9)
Copyright?2004JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng2004;59:1039–1074
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 高中数学竞赛 平面几何的几个重要定理——梅涅劳斯定理
- 高一数学竞赛辅导真题训练4
- 周五高一实高培优
- 化学竞赛试卷(湖北)
- 关于公布十佳歌手大赛预赛结果的通知
- 地理64C江苏省答案
- 关于毛笔书法展演培训报名的通知
- 植物形态解剖学
- 2010年全国高中学生化学竞赛(省级赛区)试题
- 5. 分角尺几何作图一书作图错误及其纠正
- 高中数学竞赛 平面几何讲座第1讲 注意添加平行线证题
- 十佳歌手大赛评分细则
- 2003中国化学会全国高中学生化学竞赛(省级赛区)试题
- 高中数学竞赛 平面几何的几个重要定理——西姆松定理
- 【竞赛及提前招生】2012年重点高中自主招生物理试卷(四)
- 十佳歌手初赛工作人员分工
- 高中数学竞赛 平面几何的几个重要定理——托勒密定理
- 安徽省第二届大学生物理实验竞赛试题和参考答案
- 2011年浙江省高中数学竞赛试题
- 高三数学竞赛
- 关于高中生处分的建议
- 字音竞赛40题及答案
- 高中数学竞赛 平面几何讲座第4讲 四点共圆问题
- 十佳歌手大赛
- 2014年浙江省高中学生化学竞赛预赛试题(扫描版,含答案和评分标准)
- 湖南科技学院第8届大学生物理竞赛试卷(答案)
- 广东省广州市2013年中学生法律知识竞赛高二级试题
- 2014年全国中学生生物学联赛试题 含答案及解析
- 2015届高三自主招生动员20150310
- 高中数学竞赛 平面几何问题选讲
网友关注视频
- 三年级英语单词记忆下册(沪教版)第一二单元复习
- 沪教版八年级下册数学练习册21.3(2)分式方程P15
- 人教版历史八年级下册第一课《中华人民共和国成立》
- 二年级下册数学第二课
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 冀教版英语四年级下册第二课
- 七年级英语下册 上海牛津版 Unit5
- 外研版英语七年级下册module3 unit1第二课时
- 小学英语单词
- 七年级下册外研版英语M8U2reading
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 七年级英语下册 上海牛津版 Unit3
- 《空中课堂》二年级下册 数学第一单元第1课时
- 冀教版小学数学二年级下册1
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
- 冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
- 苏教版二年级下册数学《认识东、南、西、北》
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 3月2日小学二年级数学下册(数一数)
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 外研版英语三起6年级下册(14版)Module3 Unit2
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 冀教版小学英语四年级下册Lesson2授课视频
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理