USE4_Empirical_Notes
上传者:孙希延|上传时间:2015-05-10|密次下载
USE4_Empirical_Notes
use model
Model Insight
The Barra US Equity Model (USE4) Empirical Notes
Yang Liu
Jose Menchero
D. J. Orr
Jun Wang
September 2011
http://wendang.chazidian.com
内容需要下载文档才能查看
use model
内容需要下载文档才能查看
Model Insight USE4 Empirical Notes September 2011
Contents
1. Introduction ........................................................................... 4
1.1. Model Highlights.............................................................................................. 4 2. Methodology Highlights ........................................................ 5
2.1. Optimization Bias Adjustment ....................................................................... 5
2.2. Volatility Regime Adjustment ......................................................................... 5
2.3. Country Factor.................................................................................................. 6
2.4. Specific Risk Model with Bayesian Shrinkage ............................................... 6 3. Factor Structure Overview .................................................... 7
3.1. Estimation Universe......................................................................................... 7
3.2. Industry Factors ............................................................................................... 7
3.3. Multiple Industry Exposures ........................................................................ 13
3.4. Style Factors .................................................................................................. 15
3.5. Performance of Select Factors..................................................................... 17 4. Model Characteristics and Properties ................................ 22
4.1. Country and Industry Factors ...................................................................... 22
4.2. Style Factors .................................................................................................. 25
4.3. Explanatory Power ....................................................................................... 27
4.4. Cross-Sectional Dispersion ........................................................................... 28
4.5. Specific Risk .................................................................................................... 32 5. Forecasting Accuracy........................................................... 34
5.1. Overview of Testing Methodology ............................................................. 34
5.2. Backtesting Results ....................................................................................... 37 6. Conclusion ........................................................................... 50
Appendix A: Descriptors by Style Factor ................................. 51
Beta ........................................................................................................................... 51
Momentum .............................................................................................................. 51
Size ............................................................................................................................. 51
Earnings Yield ........................................................................................................... 52
MSCI Portfolio Management Analytics © 2011 MSCI Inc. All rights reserved. Please refer to the disclaimer at the end of this document 2 of 62 http://wendang.chazidian.com
RV May 2011
use model
内容需要下载文档才能查看
Model Insight USE4 Empirical Notes September 2011
Residual Volatility ..................................................................................................... 52
Growth ...................................................................................................................... 53
Dividend Yield ........................................................................................................... 53
Book-to-Price ............................................................................................................ 53
Leverage .................................................................................................................... 54
Liquidity ..................................................................................................................... 55
Non-linear Size .......................................................................................................... 55
Non-linear Beta ........................................................................................................ 55
Appendix B: Decomposing RMS Returns ................................ 56
Appendix C: Review of Bias Statistics ...................................... 57
C1. Single-Window Bias Statistics .......................................................................... 57
C2. Rolling-Window Bias Statistics ......................................................................... 58
REFERENCES ............................................................................. 61
MSCI Portfolio Management Analytics © 2011 MSCI Inc. All rights reserved. Please refer to the disclaimer at the end of this document 3 of 62 http://wendang.chazidian.com
RV May 2011
use model
内容需要下载文档才能查看
Model Insight USE4 Empirical Notes September 2011
1. Introduction
1.1. Model Highlights
This document provides empirical results and analysis for the new Barra US Equity Model (USE4). These notes include extensive information on factor structure, commentary on the performance of select factors, an analysis of the explanatory power of the model, and an examination of the statistical
significance of the factors. Furthermore, these notes also include a thorough side-by-side comparison of the forecasting accuracy of the USE4 Model and the USE3 Model, its predecessor. The methodological details underpinning the USE4 Model may be found in the companion document: USE4 Methodology Notes, described by Menchero, Orr, and Wang (2011).
Briefly, the main advances of USE4 are:
? An innovative Optimization Bias Adjustment that improves risk forecasts for optimized portfolios by reducing the effects of sampling error on the factor covariance matrix
? A Volatility Regime Adjustment designed to calibrate factor volatilities and specific risk forecasts to current market levels
? The introduction of a country factor to separate the pure industry effect from the overall market and provide timelier correlation forecasts
? A new specific risk model based on daily asset-level specific returns
? A Bayesian adjustment technique to reduce specific risk biases due to sampling error
? A uniform responsiveness for factor and specific components, providing greater stability in sources of portfolio risk
? A set of multiple industry exposures based on the Global Industry Classification Standard (GICS®) ? An independent validation of production code through a double-blind development process to assure consistency and fidelity between research code and production code
? A daily update for all components of the model
The USE4 Model is offered in short-term (USE4S) and long-term (USE4L) versions. The two versions have identical factor exposures and factor returns, but differ in their factor covariance matrices and specific risk forecasts. The USE4S Model is designed to be more responsive and provide more accurate forecasts at a monthly prediction horizon. The USE4L model is designed for longer-term investors willing to trade some degree of accuracy for greater stability in risk forecasts. MSCI Portfolio Management Analytics © 2011 MSCI Inc. All rights reserved. Please refer to the disclaimer at the end of this document 4 of 62 http://wendang.chazidian.com
RV May 2011
use model
内容需要下载文档才能查看
Model Insight USE4 Empirical Notes September 2011
2. Methodology Highlights
2.1. Optimization Bias Adjustment
One significant bias of risk models is the tendency to underpredict the risk of optimized portfolios, as demonstrated empirically by Muller (1993). More recently, Shepard (2009) derived an analytic result for the magnitude of the bias, showing that the underforecasting becomes increasingly severe as the
number of factors grows relative to the number of time periods used to estimate the factor covariance matrix. The basic source of this bias is estimation error. Namely, spurious correlations may cause certain stocks to appear as good hedges in-sample, while these hedges fail to perform as effectively out-of-sample.
An important innovation in the USE4 Model is the identification of portfolios that capture these biases and to devise a procedure for correcting these biases directly within the factor covariance matrix. As shown by Menchero, Wang, and Orr (2011), the eigenfactors of the sample covariance matrix are systematically biased. More specifically, the sample covariance matrix tends to tends to underpredict the risk of low-volatility eigenfactors, while overpredicting the risk of high-volatility eigenfactors. Furthermore, removing the biases of the eigenfactors essentially removes the biases of optimized portfolios.
In the context of the USE4 Model, eigenfactors represent portfolios of the original pure factors. The eigenfactor portfolios, however, are special in the sense that they are mutually uncorrelated. Also note that the number of eigenfactors equals the number of pure factors within the model.
As described in the USE4 Methodology Notes, we estimate the biases of the eigenfactors by Monte Carlo simulation. We then adjust the predicted volatilities of the eigenfactors to correct for these biases. This procedure has the benefit of building the corrections directly into the factor covariance matrix, while fully preserving the meaning and intuition of the pure factors.
2.2. Volatility Regime Adjustment
Another major source of risk model bias is due to the fact that volatilities are not stable over time, a characteristic known as non-stationarity. Since risk models must look backward to make predictions about the future, they exhibit a tendency to underpredict risk in times of rising volatility, and to overpredict risk in times of falling volatility.
Another important innovation in the USE4 Model is the introduction of a Volatility Regime Adjustment for estimating factor volatilities. As described in the USE4 Methodology Notes, the Volatility Regime Adjustment relies on the notion of a cross-sectional bias statistic, which may be interpreted as an instantaneous measure of risk model bias for that particular day. By taking a weighted average of this quantity over a suitable interval, the non-stationarity bias can be significantly reduced.
Just as factor volatilities are not stable across time, the same holds for specific risk. In the USE4 Model, we apply the same Volatility Regime Adjustment technique for specific risk. We estimate the adjustment by computing the cross-sectional bias statistic for the specific returns.
MSCI Portfolio Management Analytics © 2011 MSCI Inc. All rights reserved. Please refer to the disclaimer at the end of this document 5 of 62 http://wendang.chazidian.com
RV May 2011
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 美术学科笔试唐代山水及花鸟画考点介绍
- 如何区分西方绘画之文艺复兴时期绘画特点(3)
- 教师资格证统考之美术学科试卷解剖
- 中国美术史中的山水画发展史脉络梳理
- 2015教资国考:世界美术史备考资料(二)
- 美术学科备考指导之先秦绘画考点介绍
- 2016年上半年全国教师资格考试美术面试备考指导
- 2015教资国考:史前美术与古代美术(二)
- 教师资格面试试题分析(高中阶段)
- 2017年全国教师资格统考(初中)美术知识与教学能力考情分析
- 教师资格证统考之中国美术史考点解读
- 2016下半年全国教师资格统考《美术学科知识与教学能力》题型分析
- 云南美术教师资格证统考之试卷解剖
- 2015教资国考:明清美术(三)
- 2016下半年教师资格统考《美术学科知识与教学能力》大纲解读
- 教师资格证考试之美术教学论
- 浅谈中国画教学
- 从试题中洞察初中美术教师资格考试考情
- 2015教资国考:明清美术(二)
- 2015教资国考:史前美术与古代美术(一)
- 高中美术鉴赏课
- 美术教师资格笔试备考指导
- 如何学习外国美术史(二)?
- 美术教师资格考试中美史常考知识点分析
- 2015教资国考:明清美术(一)
- 教师资格统考《美术学科知识与教学能力》备考及学习计划
- 2017上半年教师资格统考《美术学科知识与能力(初中)》考前预测报
- 2016下半年教师资格《美术学科知识与能力》考前备考报
- 2017年全国教师资格统考(高中)美术学科知识与教学能力考情分析
- 教师资格证考试游戏教学在小学美术课堂的运用
网友关注视频
- 二年级下册数学第二课
- 外研版英语七年级下册module3 unit1第二课时
- 冀教版英语四年级下册第二课
- 二年级下册数学第三课 搭一搭⚖⚖
- 冀教版英语三年级下册第二课
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
- 人教版二年级下册数学
- 七年级英语下册 上海牛津版 Unit5
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
- 冀教版小学英语四年级下册Lesson2授课视频
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 外研版英语三起6年级下册(14版)Module3 Unit1
- 冀教版英语五年级下册第二课课程解读
- 冀教版小学数学二年级下册1
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
- 六年级英语下册上海牛津版教材讲解 U1单词
- 七年级英语下册 上海牛津版 Unit9
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
- 冀教版小学数学二年级下册第二单元《余数和除数的关系》
- 冀教版小学数学二年级下册第二单元《租船问题》
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理