USE4_Empirical_Notes
上传者:孙希延|上传时间:2015-05-10|密次下载
USE4_Empirical_Notes
use model
Model Insight
The Barra US Equity Model (USE4) Empirical Notes
Yang Liu
Jose Menchero
D. J. Orr
Jun Wang
September 2011
http://wendang.chazidian.com
内容需要下载文档才能查看
use model
内容需要下载文档才能查看
Model Insight USE4 Empirical Notes September 2011
Contents
1. Introduction ........................................................................... 4
1.1. Model Highlights.............................................................................................. 4 2. Methodology Highlights ........................................................ 5
2.1. Optimization Bias Adjustment ....................................................................... 5
2.2. Volatility Regime Adjustment ......................................................................... 5
2.3. Country Factor.................................................................................................. 6
2.4. Specific Risk Model with Bayesian Shrinkage ............................................... 6 3. Factor Structure Overview .................................................... 7
3.1. Estimation Universe......................................................................................... 7
3.2. Industry Factors ............................................................................................... 7
3.3. Multiple Industry Exposures ........................................................................ 13
3.4. Style Factors .................................................................................................. 15
3.5. Performance of Select Factors..................................................................... 17 4. Model Characteristics and Properties ................................ 22
4.1. Country and Industry Factors ...................................................................... 22
4.2. Style Factors .................................................................................................. 25
4.3. Explanatory Power ....................................................................................... 27
4.4. Cross-Sectional Dispersion ........................................................................... 28
4.5. Specific Risk .................................................................................................... 32 5. Forecasting Accuracy........................................................... 34
5.1. Overview of Testing Methodology ............................................................. 34
5.2. Backtesting Results ....................................................................................... 37 6. Conclusion ........................................................................... 50
Appendix A: Descriptors by Style Factor ................................. 51
Beta ........................................................................................................................... 51
Momentum .............................................................................................................. 51
Size ............................................................................................................................. 51
Earnings Yield ........................................................................................................... 52
MSCI Portfolio Management Analytics © 2011 MSCI Inc. All rights reserved. Please refer to the disclaimer at the end of this document 2 of 62 http://wendang.chazidian.com
RV May 2011
use model
内容需要下载文档才能查看
Model Insight USE4 Empirical Notes September 2011
Residual Volatility ..................................................................................................... 52
Growth ...................................................................................................................... 53
Dividend Yield ........................................................................................................... 53
Book-to-Price ............................................................................................................ 53
Leverage .................................................................................................................... 54
Liquidity ..................................................................................................................... 55
Non-linear Size .......................................................................................................... 55
Non-linear Beta ........................................................................................................ 55
Appendix B: Decomposing RMS Returns ................................ 56
Appendix C: Review of Bias Statistics ...................................... 57
C1. Single-Window Bias Statistics .......................................................................... 57
C2. Rolling-Window Bias Statistics ......................................................................... 58
REFERENCES ............................................................................. 61
MSCI Portfolio Management Analytics © 2011 MSCI Inc. All rights reserved. Please refer to the disclaimer at the end of this document 3 of 62 http://wendang.chazidian.com
RV May 2011
use model
内容需要下载文档才能查看
Model Insight USE4 Empirical Notes September 2011
1. Introduction
1.1. Model Highlights
This document provides empirical results and analysis for the new Barra US Equity Model (USE4). These notes include extensive information on factor structure, commentary on the performance of select factors, an analysis of the explanatory power of the model, and an examination of the statistical
significance of the factors. Furthermore, these notes also include a thorough side-by-side comparison of the forecasting accuracy of the USE4 Model and the USE3 Model, its predecessor. The methodological details underpinning the USE4 Model may be found in the companion document: USE4 Methodology Notes, described by Menchero, Orr, and Wang (2011).
Briefly, the main advances of USE4 are:
? An innovative Optimization Bias Adjustment that improves risk forecasts for optimized portfolios by reducing the effects of sampling error on the factor covariance matrix
? A Volatility Regime Adjustment designed to calibrate factor volatilities and specific risk forecasts to current market levels
? The introduction of a country factor to separate the pure industry effect from the overall market and provide timelier correlation forecasts
? A new specific risk model based on daily asset-level specific returns
? A Bayesian adjustment technique to reduce specific risk biases due to sampling error
? A uniform responsiveness for factor and specific components, providing greater stability in sources of portfolio risk
? A set of multiple industry exposures based on the Global Industry Classification Standard (GICS®) ? An independent validation of production code through a double-blind development process to assure consistency and fidelity between research code and production code
? A daily update for all components of the model
The USE4 Model is offered in short-term (USE4S) and long-term (USE4L) versions. The two versions have identical factor exposures and factor returns, but differ in their factor covariance matrices and specific risk forecasts. The USE4S Model is designed to be more responsive and provide more accurate forecasts at a monthly prediction horizon. The USE4L model is designed for longer-term investors willing to trade some degree of accuracy for greater stability in risk forecasts. MSCI Portfolio Management Analytics © 2011 MSCI Inc. All rights reserved. Please refer to the disclaimer at the end of this document 4 of 62 http://wendang.chazidian.com
RV May 2011
use model
内容需要下载文档才能查看
Model Insight USE4 Empirical Notes September 2011
2. Methodology Highlights
2.1. Optimization Bias Adjustment
One significant bias of risk models is the tendency to underpredict the risk of optimized portfolios, as demonstrated empirically by Muller (1993). More recently, Shepard (2009) derived an analytic result for the magnitude of the bias, showing that the underforecasting becomes increasingly severe as the
number of factors grows relative to the number of time periods used to estimate the factor covariance matrix. The basic source of this bias is estimation error. Namely, spurious correlations may cause certain stocks to appear as good hedges in-sample, while these hedges fail to perform as effectively out-of-sample.
An important innovation in the USE4 Model is the identification of portfolios that capture these biases and to devise a procedure for correcting these biases directly within the factor covariance matrix. As shown by Menchero, Wang, and Orr (2011), the eigenfactors of the sample covariance matrix are systematically biased. More specifically, the sample covariance matrix tends to tends to underpredict the risk of low-volatility eigenfactors, while overpredicting the risk of high-volatility eigenfactors. Furthermore, removing the biases of the eigenfactors essentially removes the biases of optimized portfolios.
In the context of the USE4 Model, eigenfactors represent portfolios of the original pure factors. The eigenfactor portfolios, however, are special in the sense that they are mutually uncorrelated. Also note that the number of eigenfactors equals the number of pure factors within the model.
As described in the USE4 Methodology Notes, we estimate the biases of the eigenfactors by Monte Carlo simulation. We then adjust the predicted volatilities of the eigenfactors to correct for these biases. This procedure has the benefit of building the corrections directly into the factor covariance matrix, while fully preserving the meaning and intuition of the pure factors.
2.2. Volatility Regime Adjustment
Another major source of risk model bias is due to the fact that volatilities are not stable over time, a characteristic known as non-stationarity. Since risk models must look backward to make predictions about the future, they exhibit a tendency to underpredict risk in times of rising volatility, and to overpredict risk in times of falling volatility.
Another important innovation in the USE4 Model is the introduction of a Volatility Regime Adjustment for estimating factor volatilities. As described in the USE4 Methodology Notes, the Volatility Regime Adjustment relies on the notion of a cross-sectional bias statistic, which may be interpreted as an instantaneous measure of risk model bias for that particular day. By taking a weighted average of this quantity over a suitable interval, the non-stationarity bias can be significantly reduced.
Just as factor volatilities are not stable across time, the same holds for specific risk. In the USE4 Model, we apply the same Volatility Regime Adjustment technique for specific risk. We estimate the adjustment by computing the cross-sectional bias statistic for the specific returns.
MSCI Portfolio Management Analytics © 2011 MSCI Inc. All rights reserved. Please refer to the disclaimer at the end of this document 5 of 62 http://wendang.chazidian.com
RV May 2011
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 五子棋比赛活动资金申请
- 长均学校少年宫简介
- 送给爸妈的礼物:“老年人使用智能手机入门攻略”
- 2015年深蓝公司矿山雨季“三防”应急预案
- 驾驶人安全考核操作规程
- 灭火器操作规程
- 激光机故障解决-武汉圣天
- 历史研讨会2014年11月21日”读书沙龙“策划书 (自动保存的)
- 抗旱救灾工作方案
- 象棋比赛策划书
- 锅炉废气事故性排放现场处置推演方案
- 员工工作守则和行为准则
- 学习“五和”郧阳,弘扬正能量
- 生产部员工文明行为规范
- 历史研讨会2015年3月28日”3.28游园特色活动“策划书
- 天黑请闭眼策划书-杀人游戏
- 春秋工作服的几大特点以及它的未来发展方向
- 夜间防震演练简报
- 书友会策划书
- 2014啤酒节方案和实施方案
- 心理健康主题班会活动方案
- 我学习_我践行_创新项目
- 广东省城市生活无着的流浪乞讨人员救助管理规定
- 简 报
- 要多给基层松绑
- 学校德育文化的有形存在与无形留存
- 2014年“时光不老 我们不散”联欢会方案
- 关于研究和报送企业文化宣传方案的通知
- 突发事件应急预案
- CTPM指导员业务内容及评价标准
网友关注视频
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 冀教版小学数学二年级下册1
- 第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 外研版英语七年级下册module3 unit2第二课时
- 飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
- 《小学数学二年级下册》第二单元测试题讲解
- 小学英语单词
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 3月2日小学二年级数学下册(数一数)
- 外研版英语七年级下册module3 unit1第二课时
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
- 北师大版小学数学四年级下册第15课小数乘小数一
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 七年级英语下册 上海牛津版 Unit5
- 沪教版八年级下册数学练习册21.3(3)分式方程P17
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 苏科版数学 八年级下册 第八章第二节 可能性的大小
- 七年级下册外研版英语M8U2reading
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理