教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 工程科技> 环境科学/食品科学> 运行优化Word

运行优化Word

上传者:曹登高
|
上传时间:2017-06-02
|
次下载

运行优化Word

  EMSELEnvironmental Management Systems Engineering Lab.

  BIOMATHDepartment of Applied Mathematics, Biometrics and Process Control

  Optimizing Biological Nutrient Removal Processes (EMSEL)

  (2007 3 9 )EMSEL, Kyung Hee Univ.(ckyoo@khu.ac.kr or ChangKyoo.Yoo@biomath.ugent.be)

  运行优化Word1

  Presentation Review of Theory – Nitrification – Denitrification – Phosphorus Removal Optimization for nutrient removal – Nitrification Optimization – Denitrification Optimization Systematic optimization protocol for N and P removal – Case study 1 : SBR, Belgium – Case study 2 : Haaren, carrousel, Netherlands Problems and Troubleshooting (?)ChangKyoo Yoo - 2

  运行优化Word2

  References1.Jeanette A. Brown, P.E., DEE, (Executive Director SWPCA, CSWEA)- Optimizing Biological Nitrogen Removal Processes, USA 2.Dean Pond, Black Veatch (WWTP Operators School)Biological Wastewater Treatment Operators School, USA 3.Kim J.K, University of Wisconsin Madison, Biological Nutrient Removal Theories and Design, USA 4.Tao Jiang, BIOMATH , Belgium, UNESCO-IHE, Calibrating a Side-stream Membrane Bioreactor using ASM1, Belgium 5. Henze, DTU, Activated Sludge Model 1,2,2d,3, Denmark 6.Peter A. Vanrolleghem, Laval Univ., Optimal but robust N and P removal in SBRs, Canada

  ChangKyoo Yoo - 3

  运行优化Word3

  Advanced Treatment Systems

  What are the effects of N and P in receiving waters?

  ChangKyoo Yoo - 4

  运行优化Word4

  What are the effects of N and P in receiving waters? Increases aquatic growth (algae) Increases DO depletion Causes NH4 toxicity Causes pH changes

  ChangKyoo Yoo - 5

  运行优化Word5

  Nitrogen Removal Purpose– Reduce effluent N (ammonia and nitrates) – Biological or chemical – Reduce nutrient load on stream – Reduce algae growth – Reduce oxygen depletion

  ChangKyoo Yoo - 6

  运行优化Word6

  Why is it necessary to treat the forms of nitrogen? Improve receiving stream quality Increase chlorination efficiency Minimize pH changes in plant Increase suitability for reuse Prevent NH4 toxicity Protect groundwater from nitrate contamination

  ChangKyoo Yoo - 7

  运行优化Word7

  What are the forms of nitrogen found in wastewater? TKN = 40% Organic + 60% Free Ammonia Typical concentrations: Ammonia-N = 10-50 mg/L Organic N = 10 – 35 mg/L No nitrites or nitrates Forms of nitrogen: Organic N TKN Ammonia Total Nitrite N Nitrate

  ChangKyoo Yoo - 8

  运行优化Word8

  Why is it sometimes necessary to remove P from municipal WWTPs? Reduce phosphorus, which is a key limiting nutrient in the environment Improve receiving water quality by:– Reducing aquatic plant growth and DO depletion – Preventing aquatic organism kill

  Reduce taste and odor problems in downstream drinking water supplies

  ChangKyoo Yoo - 9

  运行优化Word9

  Advanced Treatment SystemsIdentify and explain the objectives of the following advanced treatment systems:– Further removal of organics – Further removal of suspended

  solids – Nutrient removal (N and P) – Removal of dissolved solids

  ChangKyoo Yoo - 10

  运行优化Word10

  Advanced Treatment Systems

  How is N removed or altered by conventional secondary (biological) treatment?

  ChangKyoo Yoo - 11

  运行优化Word11

  Nitrification

  ChangKyoo Yoo - 12

  运行优化Word12

  Nitrification Oxidation of ammonia nitrogen to nitrite nitrogen by nitrosamonas group:– NH4+ + O2 2H+ + NO2-

  Oxidation of nitrite nitrogen by nitrobacter group:– NO2- + O2 NO3-

  ChangKyoo Yoo - 13

  运行优化Word13

  Nitrification NH4+ Nitrosomonas NO2 NO2- Nitrobacter NO3 Notes:– – – – Aerobic process Control by SRT (4 + days) Uses oxygen 1 mg of NH4+ uses 4.6 mg O2 Depletes alkalinity 1 mg NH4+ consumes 7.14 mg alkalinity – Low oxygen and temperature = difficult to operateChangKyoo Yoo - 14

  运行优化Word14

  Un-aerated Bioreactor (Anoxic Zone)

  Primary EffluentAnoxic

  Nitrate RecycleAerobic

  RAS WAS

  ChangKyoo Yoo - 15

  运行优化Word15

  Characteristics of an Un-aerated Bioreactor Anoxic Microorganisms– Facultative heterotrophic-use carbon for the formation of new biomass – Use nitrate/nitrite instead of oxygen – Oxygen is preferred

  ChangKyoo Yoo - 16

  运行优化Word16

  Nitrifier Minimum Aerobic SRT Varies with Temperature.9 8 7 6 5 4 3 2 1 0 10

  Minimum SRT (Days)

  Nitrification

  No Nitrification

  15

  20 Temp (Deg Cent)

  25

  30

  ChangKyoo Yoo - 17

  运行优化Word17

  Effective Nitrification

  Achieved by: Effective nitrification – Adequate Aerobic SRT Temperature – Sufficient Oxygen Transfer Capacity Maintain a DO of 2 mg/l at peak loadings – pH 6.5, preferably 7 Accomplished by sufficient alkalinity (Effluent concentration at least 50 mg/l – No inhibitory materials

  ChangKyoo Yoo - 18

  运行优化Word18

  Nitrification Optimization Summary Test nitrification rate occasionally Select appropriate SRT Keep DO at 2 mg/l Keep pH about neutral (optimal 7.5 to 8.5) Provide sufficient alkalinity

  ChangKyoo Yoo - 19

  运行优化Word19

  Denitrification

  ChangKyoo Yoo - 20

  运行优化Word20

  Denitrification

  Using methanol as carbon source: 6 NO3- + 5 CH3OH N2 + 5 CO2 + 7 H2O + 6 OH Using an endogenous carbon source: C5H7NO2 + 4.6 NO32.8 N2 + 5 CO2 + 1.2 H2O + 4.6 OH-

  ChangKyoo Yoo - 21

  运行优化Word21

  Denitrification NO3- denitrifiers (facultative bacteria) N2 gas + CO2 gas Notes:– Anoxic process – Control by volume and oxic MLSS recycle to anoxic zone – N used as O2 source = 1 mg NO3- yields 2.85 mg O2 equivalent – Adds alkalinity 1 mg NO3- restores 3.57 mg alkalinity – High BOD and NO3- load and low temperature = difficult to operate

  ChangKyoo Yoo - 22

  运行优化Word22

  Denitrification with Supplemental CarbonMethanol or other carbon source

  Primary Effluent

  Nitrate Recycle

  RAS WAS

  ChangKyoo Yoo - 23

  运行优化Word23

  Denitrification is Controlled by Mixed Liquor Recirculation.

  90 80 70 60 50 40 30 20 10 0 0 100 200

  Denitrification (%)

  % Denit = R/(R+Q) * 100

  300

  400

  500

  Mixed Liquor Recirculation (%)

  ChangKyoo Yoo - 24

  运行优化Word24

  Effective Denitrification

  Size based on anoxic SRT– Typically 1 to 2 day

  s depending on temperature

  Effective Denitrification – Sufficient Anoxic Volume (Anoxic SRT) – Sufficient Carbon – Sufficient mixed liquor recirculation

  ChangKyoo Yoo - 25

  运行优化Word25

  External Carbon Methanol Stoichiometry– 2.5 (NO3-N) + 1.5 (NO2-N) + 0.87 (DO) – Or, approximately 3 mg CH3OH/mg NO3-N – Requires 1 to 3 day SRT in secondary anoxic zone depending on temperature

  Other carbon sources technically feasible but generally more expensive.

  ChangKyoo Yoo - 26

  运行优化Word26

  Denitrification Optimization Summary Minimize DO in anoxic zone ( 0.2 mg/l) Have 2Q to 4 Q recycle capabilities Provide sufficient carbon (readily biodegradable COD) Maximize use of secondary anoxic zones

  ChangKyoo Yoo - 27

  运行优化Word27

  Phosphorus

  ChangKyoo Yoo - 28

  运行优化Word28

  Phosphorus Removal Purpose– – – – – Reduce effluent P Biological or chemical method Reduce nutrient load on stream Reduce algae growth Reduce oxygen depletion

  Application / Mechanism– Biological – Chemical

  ChangKyoo Yoo - 29

  运行优化Word29

  Phosphorus Removing MechanismPO 43-

  Facultative bacteria Acetate plus Substrate fermentation products Anaerobic

  Energy

  Acinetobacter spp. (Phosphorus Poly-P removing PHB bacteria, slow grower)

  Aerobic

  EnergyBOD + O2

  PHB Poly-P

  PO 4

  3-

  +CO2 + H2O

  New biomass

  ChangKyoo Yoo - 30

  运行优化Word30

  Continued …

  Phosphorus Removal Biological

  Q

  Anaerobic Zone

  Aerobic Zone

  Final Clarifier

  Effl

  P Release

  P Luxury Uptake

  RAS

  WAS

  P RemovalChangKyoo Yoo - 31

  运行优化Word31

  Continued …

  Phosphorus Removal ChemicalPrimary Clarifier Aerobic Zone Final Clarifier Effl

  Q

  Chemical Coagulant

  Chemical Coagulant

  RAS

  WAS P Removal

  ChangKyoo Yoo - 32

  运行优化Word32

  Effective Phosphorus Removal Size based on SRT– Typically 7 to 10 days depending on temperature

  Effective Denitrification – Sufficient Anaerobic Volume (Anaerobic SRT) – Sufficient influent carbon – Competition between denitrification and phosphorous removal bacteria Sensitive to influent carbon Unstable processChangKyoo Yoo - 33

  运行优化Word33

  /

  ChangKyoo Yoo - 34

  运行优化Word34

  Guidelines for Biological Nutrient Removal (BNR) Process SelectionNitrogen Removal Four

  Stage Bardenpho Process Modified Ludzack-Ettinger (MLE) Process

  Phosphorus Removal Only A/O

  Process

  Nitrogen and Phosphorus Removal Five

  Stage Bardenpho (Phoredox) Process University of Cape Town (UCT) Process Modified UCT Process Virginia Initiate Process (VIP)ChangKyoo Yoo - 35

  运行优化Word35

  Schematic Process Configuration for Optional OperationsMixed liquor recycle, rMixed liquor recycle, a Secondary clarifier Anaerobic Influent Effluent Sludge recycle, s Anoxic Aerobic

  Phoredox process UCT process Modified UCT processChangKyoo Yoo - 36

  运行优化Word36

  Process Selection Based on TKN/COD ratio (Initial Screening)Nitrogen Removal TKN/COD

  0.09: Bardenpho process TKN/COD 0.10: MLE process

  Nitrogen and/or Phosphorus Removal TKN/COD

  0.07 ~ 0.08: A/O,

  A2/O, Phoredox process (modified Bardenpho) TKN/COD 0.12 ~ 0.14: UCT process TKN/COD 0.11: Modified UCT process

  ChangKyoo Yoo - 37

  运行优化Word37

  Systematic optimization protocol for N and P removal

  ChangKyoo Yoo - 38

  运行优化Word38

  Introduction WWTP are complex systems Complex models can help in:– – – – Understanding the processes Plant design Plant optimisation Plant control

  In practice– Which model to choose? – How to calibrate the model? – How to optimize the processneed for calibration and optimization protocolChangKyoo Yoo - 39

  运行优化Word39

  Why Model-based Optimization ?Solving Problems for wwtp systemsSystem under study Optimized System

  Experimenting Reality

  Virtual RealityModel of the System

  Simulate

  Solution for the System

  ChangKyoo Yoo - 40

  运行优化Word40

  The systematic optimisation protocol

  Systematize and standardize the model-based optimisation using mechanistic models (ASM2d for N- P- removal) Objective oriented iterative protocol A grid of scenarios (full-factorial design) built on the basis of the degrees of freedom and the constraints of the SBR system Selection and calibration of a suitable model to describe the biological processes Simulation and evaluation of a multitude of scenarios Selection of the best scenario Implementation final evaluation

  1. Objective(s) 2. Framework of the optimization 3. Model selection and calibration

  4. Scenario analysis5. Evaluation of the results of scenarios 6. Implementation of the best scenario 7. Measurement campaign No Target reached? YesEND

  ChangKyoo Yoo - 41

  运行优化Word41

  Plant Information

  Necessary information for model calibration

  Mass balance, Operating parameters (SRT, HRT, control)

  Aeration Hydraulics

  Model based w.w. characterizationFlowrates COD fractionation (SS, SF, XS, XI, SI)

  Biomass characterizationKinetic, stoichiometric parameters Active biomass fractions

  N, P fractions, TSSChangKyoo Yoo - 42

  Biomass composition

  运行优化Word42

  Biomath calibration protocolStage II – Plant survey/data analysis Design data– Plant layout/configuration, volumes, pumps, aerators,...

  Operational data– Flow rates, sludge recycle/waste, control strategies,...

  Measured data– Influent/effluent characterisation (COD,TKN,PO4,NO3,...) – On-line measurements (DO,T,pH,...) – TSS (RAS and effluent), sludge age/production,...

  Mass balances– Flow rate, sludge (including N P) – Important for data quality check (e.g. sludge age)ChangKyoo Yoo - 43

  运行优化Word43

  Case study (I) - SBR Developing a robust biological system– Detect the major sources of process disturbances as soon as possible – Useful to keep the sludge as stable as possible – Volume (80 L), SRT (10 d) and HRT (12 h), 6 hour cycle mode – Six on-line measurements (DO, ORP, pH, conductivity, temperature, weight)InfluentAnaerobi c + filling Aerobic Anoxic Aerobic Settling Draw

  Concentratio n

  Effluent

  60ChangKyoo Yoo - 44

  150

  60

  30

  45

  15

  Cycle time (min)

  运行优化Word44

  Introduction

  Both N P removal successfully demonstrated at lab-scale and full-scale SBR installations. SBR offers more flexibility in operation (compared to continuous systems) –a key aspect in process optimisation. A myriad of operating strategies to optimise nutrient removal performance in SBRs. Usually developed at lab- or pilot-scale only comparison of a few operating scenarios Increasingly, mathematical models (e.g. ASM1 for N-removal and ASM2d for N- P- removal) are used to search for the optimal operating scenario

  ChangKyoo Yoo - 45

  运行优化Word45

  50

  100

  150 200 250 Time (min)

  300

  350

  50

  100

  150 200 250 Time (min)

  300

  350

  ChangKyoo Yoo - 46

  运行优化Word46

  Scenario analysis

  Construction of grids of scenariosChoose a range and interval for the degrees of freedoms: SO-sp: [0.2, 0.4, 0.6, 0.8, 1,2] Vstep-feed: [0, 5, 10] TANB: [60, 70, 80] TAER: [130, 140, 150] Intermittent aeration frequency:[1, 2, 4, 8]

  Full-factorial design of degrees of freedoms: total 648 scenarios Each scenario simulated for 30 days (3 X SRT)

  ChangKyoo Yoo - 47

  运行优化Word47

  Scenario analysis

  Formulation of grids of scenarios:

  Configuration of intermittent aeration frequencies step-feed of influent ( )

  reference

  TANB Fill/anaerobic Aerobic react Anoxic react Settle Draw TAER TANX

  TAER2

  IAF1TS TD

  TC

  TANB Fill/anaerobic Aerobic react Anoxic react Settle Draw TAER/2 TANX/2 TAER/2 TANX/2

  IAF2TAER2 TS TD TC

  Scenario analysis

  TANB Fill/anaerobic Aerobic react Anoxic react Settle Draw TANB Fill/anaerobic Aerobic react Anoxic react Settle Draw

  IAF4TAER2 TS TD TC

  IAF8TAER2 TS TD TC

  ChangKyoo Yoo - 48

  运行优化Word48

  Evaluation of the scenarios

  Effluent quality

  Effluent quality of 648 scenarios were analysed, general conclusions: Increasing TANB improves P-removal but decreases Nremoval Increasing TAER slightly improves the nitrification but negative effect on denitrification. The SO-sp is the most critical/dictates the overall behaviour of the system. The step-feed has a positive effect on the denitrification. Increasing the intermittent aeration frequency (IAF) increases N P removal

  ChangKyoo Yoo - 49

  运行优化Word49

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

苏科版数学 八年级下册 第八章第二节 可能性的大小
8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
沪教版牛津小学英语(深圳用)五年级下册 Unit 1
沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
外研版英语七年级下册module3 unit1第二课时
冀教版小学数学二年级下册第二单元《余数和除数的关系》
30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
北师大版小学数学四年级下册第15课小数乘小数一
外研版英语三起6年级下册(14版)Module3 Unit1
外研版英语七年级下册module3 unit2第一课时
冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
二年级下册数学第二课
沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
人教版二年级下册数学
沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
外研版英语七年级下册module1unit3名词性物主代词讲解
苏科版数学七年级下册7.2《探索平行线的性质》
第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
冀教版英语五年级下册第二课课程解读
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
外研版英语三起5年级下册(14版)Module3 Unit2