Adaptive OFDM Radar for Target Detection in
上传者:刘朝英|上传时间:2015-04-24|密次下载
Adaptive OFDM Radar for Target Detection in
最前沿的ofdm国外研究成果
78IEEETRANSACTIONSONSIGNALPROCESSING,VOL.59,NO.1,JANUARY2011
AdaptiveOFDMRadarforTargetDetectionin
MultipathScenarios
SatyabrataSen,StudentMember,IEEE,andAryeNehorai,Fellow,IEEE
Abstract—Wedevelopmethodsfordetectingamovingtargetinthepresenceofmultipathre?ections,whichexist,forexample,inurbanenvironments.Wetakeadvantageofthemultipathprop-agationthatincreasesthespatialdiversityoftheradarsystemandprovidesdifferentDopplershiftsoverdifferentpaths.Weemployabroadbandorthogonalfrequencydivisionmultiplexing(OFDM)signaltoincreasethefrequencydiversityofthesystemasdifferentscatteringcentersofatargetresonatevariablyatdifferentfrequencies.Toovercomethepeak-to-averagepowerratio(PAPR)problemoftheconventionalOFDM,wealsouseconstant-envelopeOFDM(CE-OFDM)signalingscheme.First,weconsiderasimplescenarioinwhichtheradarreceivesonlya?nitenumberofspecularlyre?ectedmultipathsignals.Wedevelopparametricmeasurementmodels,forboththeOFDMandCE-OFDMsignalingmethods,underthegeneralizedmulti-variateanalysisofvariance(GMANOVA)frameworkandemploythegeneralizedlikelihoodratio(GLR)teststodecideaboutthepresenceofatargetinaparticularrangecell.Then,weproposeanalgorithmtooptimallydesigntheparametersoftheOFDMtransmittingwaveformforthenextcoherentprocessinginterval.Inaddition,weextendourmodelstostudytheaspectsoftemporalcorrelationsinthemeasurementnoise.Weprovideafewnumer-icalexamplestoillustratetheperformancecharacteristicsoftheproposeddetectorsanddemonstratetheachievedperformanceimprovementduetoadaptiveOFDMwaveformdesign.
IndexTerms—Adaptivewaveformdesign,asymptoticperfor-manceanalysis,multipath,OFDMradar,targetdetection,urbanscenarios.
I.INTRODUCTION
HEproblemofdetectionandtrackingtargetsinthepres-enceofmultipath,particularlyinurbanenvironments,arebecomingincreasinglyrelevantandchallengingtoradartechnologies.In[1],wehaveshownthatthetargetdetectioncapabilitycanbesigni?cantlyimprovedbyexploitingmultipleDopplershiftscorrespondingtotheprojectionsofthetargetvelocityoneachofthemultipathcomponents.Furthermore,themultipathpropagationsincreasethespatialdiversityoftheradarsystembyprovidingextra“looks”atthetargetandthusenablingtargetdetectionandtrackingevenbeyondtheline-of-sight(LOS)
ManuscriptreceivedJanuary04,2010;acceptedOctober04,2010.DateofpublicationOctober11,2010;dateofcurrentversionDecember17,2010.ThisworkwassupportedbytheDepartmentofDefenseundertheAirForceOf-?ceofScienti?cResearchMURIGrantFA9550-05-1-0443andONRGrantN000140810849.Theassociateeditorcoordinatingthereviewofthismanu-scriptandapprovingitforpublicationwasDr.DenizErdogmus.
TheauthorsarewiththeDepartmentofElectricalandSystemsEngineering,WashingtonUniversityinSt.Louis,St.Louis,MO63130USA(e-mail:ssen3@ese.wustl.edu;nehorai@ese.wustl.edu).
Colorversionsofoneormoreofthe?guresinthispaperareavailableonlineathttp://wendang.chazidian.com.
DigitalObjectIdenti?er10.1109/TSP.2010.2086448
T
[2],[3].Otherareasofapplicationinwhichmultipatheffectsareofprimaryinterestareinlow-angletracking(sea-skimmers)[4]–[7],height?nding[8],[9],andradar-aidednavigationandlandingsystems[10].Similarproblemshavebeenaddressedinsonarliteratureduetobottombounceinshallowwaters[11],[12].Notethatin[13]wehavedemonstratedthatthedirection-?ndingcapabilityofaradarsystemcanbeimprovedalsobyexploitingmultipathre?ectionsclosetothesensors.
Toresolveandexploitthemultipathcomponentsitisgener-allycommontouseshortpulse,multi-carrierwidebandradarsignals.Weconsidertheorthogonalfrequencydivisionmulti-plexing(OFDM)signalingscheme[14],[15],whichisoneofthewaystoaccomplishsimultaneoususeofseveralsubcarriers.TheuseofOFDMsignalmitigatesthepossiblefading,resolvesthemultipathre?ections,andprovidesadditionalfrequencydi-versityasdifferentscatteringcentersofatargetresonateatdif-ferentfrequencies.
AlthoughOFDMhasbeenelaboratelystudiedandcom-mercializedinthedigitalcommunication?eld[16],ithasnotsowidelybeenstudiedbytheradarcommunityapartfromafewrecentefforts[17]–[19].OneofmajorreasonsofsuchunpopularityisthatOFDMhasatime-varyingenvelopeandthatoriginatesapotentiallyhighpeak-to-averagepowerratio(PAPR)[20],[21].AhighvalueofPAPRdemandsforsystemcomponents(e.g.,transmitter’spowerampli?er)withalargelinearregionofoperation.However,practicalpowerampli?ersoperateoverlimitedlinearregion,beyondwhichtheysaturatecausingnonlineardistortiontothesignal[22].
Overtheyears,anumberofapproacheshavebeenproposedtodealwiththePAPRproblem.AcomprehensivesurveyofPAPRreductiontechniquescanbefoundin[20]and[23,Ch.6].OneofsuchmethodsistoapplythephasemodulationtransformthatachievesthelowestpossiblePAPR(0dB).Inthiswork,besidesconsideringconventionalOFDM,wealsoincludetheconstant-envelopeOFDM(CE-OFDM)signalingscheme[21],[24]–[27],whichisbasedonusingareal-valuedbasebandOFDMsignaltophasemodulatethecarrier.
First,wediscussadetectionprobleminwhichtheradarhasthecompleteknowledgeofthe?rst-order(orsinglebounce)specularlyre?ectedmultipathsignals.Wealsoassumethattheclutterandmeasurementnoisearetemporallywhite.InSectionII,wedevelopthemeasurementmodels,forboththeOFDMandCE-OFDMsignalingschemes,underthegeneralizedmultivariateanalysisofvariance(GMANOVA)framework[28],[29].Basedonthesemodels,inSectionIII,weformulatethedetectionproblemasahypothesistesttodecideaboutthepresenceofatargetinaparticularrangecell.Duetothelackofknowledgeofalltheparametersinourmodels,
1053-587X/$26.00©2010IEEE
最前沿的ofdm国外研究成果
SENANDNEHORAI:ADAPTIVEOFDMRADARFORTARGETDETECTIONINMULTIPATHSCENARIOS79
weemploythegeneralizedlikelihoodratio(GLR)test[30,Ch.6].Wepresentnumericalresultstoevaluatetheperformanceoftheseproposeddetectors,aswedonothaveanyanalyticalexpressionstoevaluatetheirperformances.
Then,inSectionIV,weproposeacriteriontoadaptivelycomputetheparametersofthenexttransmittingwaveform.Toconstructsuchacriterionwe?rstlookintotheperformancecharacteristicsoftheGLRteststatisticsforbothOFDMandCE-OFDMmodelsassumingthatthetargetvelocityisknown.However,thisanalysisdoesnotcharacterizethedetectionper-formanceofourdetectors,inwhichthetargetvelocityisun-known.TheanalysiswithknowntargetvelocityshowsthattheGLRtestresultsinconstantfalsealarmrate(CFAR)detectorsforbothOFDM(withlargenumberoftemporalsamples)andCE-OFDM(with?nitenumberoftemporalsample)models,andthedetectionperformancesdependonthesystemparametersthroughthecorrespondingnoncentralityparametersofthedis-tributionsunderalternatehypothesis.Thisimpliesthatitispos-sibletoimprovethedetectionperformancebymaximizingthesenoncentralityparameters.Weapplythisideatoourproblemandformulatetheoptimizationproblemtoselecttheparametersofthenexttransmittingwaveformthatmaximizesthesameex-pressionofthenoncentralityparametersubjecttoa?xedtrans-mission-energyconstraint.FortheOFDMmodel,weshowthatthesolutionofthisoptimizationproblemresultsinaneigen-vectorcorrespondingtothelargesteigenvalueofamatrixthatdependsonthetarget,clutter,andnoiseparameters.However,fortheCE-OFDMmodelwecannotimprovethedetectionper-formanceinthiswaybecausethenoncentralityparameterdoesnotdependonthetransmittingwaveform.
Laterinthepaper,inSectionV,werelaxtheassumptionoftemporalwhitenesstostudytheeffectsoftemporallycor-relatedmeasurementnoiseprocessonourmodels.Temporalcorrelationsexistincertainradarapplications,inparticularathighpulserepetitionfrequencies(PRF)[31],[32].Tomodelthetemporalcorrelationmatrix,welookintoabranchofstatisticsknownasthenearestneighboranalysis[33],[34],andpresenttheconsequentdetectiontests.
Toillustratethepotentialofourproposeddetectors,wepresentnumericalexamplesinSectionVI.We?ndthatthewidebandOFDMmodelperformsbetterthanthenarrowbandCE-OFDMmodelinexploitingthemultipathre?ections.Inaddition,weachievesigni?cantperformanceimprovementduetoadaptiveOFDMwaveformdesign.However,theCE-OFDMsignallackssuchanadaptivedesignasthedetectionper-formancedoesnotdependonthetransmittingcoef?cients.Finally,wegiveconcludingremarksandsomethoughtsonafewunaddressedissuesinSectionVII.
Notations:Welistheresomenotationalconventionthatwillbeusedthroughoutthispaper.Weusemathitalicforscalers,lowercaseboldforvectors,anduppercaseboldformatrices.Fora
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看matrix
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看,
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看,
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看,
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看,
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看,
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看,
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看,,
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看and
denotethetranspose,conjugate-transpose,deter-
内容需要下载文档才能查看minant,
thentry,generalizedinverse(such
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看that),trace,vec-operation,andblock-diagonalvec-operation(de-?nedin[35,eq.(7)])
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看of,
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看respectively.representsaniden-titymatrixof
内容需要下载文档才能查看dimension
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看.
formsasquarematrixwithnonzeroentriesonlyonthemaindiagonal.Additionally,
内容需要下载文档才能查看,Fig.1.Schematicrepresentationofthemultipath
内容需要下载文档才能查看scenario.
,
内容需要下载文档才能查看andaretheinner-product,Kroneckerproduct,andele-ment-wiseHadamardproductoperators,respectively.
II.PROBLEMDESCRIPTIONANDMODELING
Weconsiderafar-?eldpointtargetmovingwithaconstantrelative
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看velocity,withrespecttotheradar,inamultipath-richenvironment,asshowninFig.1.Attheoperatingfrequency,weassumethatthere?ectingsurfacesproduceonlyspecularre-?ectionsoftheradarsignal.Weassumethattheradarhasthecompleteknowledgeoftheenvironmentthatisundersurveil-lance.Hence,foreveryrangecelltheradarknowsthenumber
ofpossible
内容需要下载文档才能查看multipath
betweentheradarandtargetandthedirection-of-arrival(DOA)unit-vectors
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看(
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看,
)alongeachsuchpath.Underthisscenario,we?rstintro-ducetheparametricmeasurementmodelsforbothOFDMandCE-OFDMsignalingtechniques.Then,wediscussourstatis-ticalassumptionsontheclutterandnoise.A.OFDMMeasurementModel
WeconsideranOFDMsignalingsystem[15]
内容需要下载文档才能查看with
ac-tivesubcarriers,abandwidth
内容需要下载文档才能查看of
Hz,andpulseduration
内容需要下载文档才能查看ofseconds.
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看Letrepresentsthecomplexweightstransmittedover
内容需要下载文档才能查看thesubcarriers,
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看satisfying
.Then,thecomplexenvelopeofthetransmitted
signalcanberepresented
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看as
(1)
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看wheredenotesthesubcarrierspacing.
内容需要下载文档才能查看Letbethecarrierfrequencyofoperation,thenthetransmittedsignalisgiven
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看by
(2)
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看whererepresentsthethsubcarrierfrequency.Interchangingtherealandsummationoperators,wecanalsorewrite(2)
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看as
(3)
最前沿的ofdm国外研究成果
etection problem as a hypothesis test to decide about the presence of a target in a particular range cell. Due to the lack of knowledge of all the parameters in our models, 1053-587X/$26.00 © 2010 IEEE SEN AND NEHORAI: ADAPTIVE OFDM RADAR FOR TARGET DETECTION IN MULTIPATH SCENARIOS 79 we employ the generalized likelihood ratio (GLR) test [30, Ch. 6]. We present numerical results to evaluate the performance of these proposed detectors, as we do not have any analytical expressions to evaluate their performances. Then, in Section IV, we propose a criterion to adaptively compute the parameters of the next transmitting waveform. To construct such a criterion we ?rst look into the performance characteristics of the GLR test statistics for both OFDM and CE-OFDM models assuming that the target velocity is known. However, this analysis does not characterize the detection performance of our detectors, in which the target velocity is unknown. The analysis with known target velocity shows that the GLR test results in constant false alarm rate (CFAR) detectors for both OFDM (with large number of temporal samples) and CE-OFDM (with ?nite number of temporal sample) models, and the detection performances depend on the system parameters through the corresponding noncentrality parameters of the distributions under alternate hypothesis. This implies that it is possible to improve the detection performance by maximizing these noncentrality parameters. We apply this idea to our problem and formulate the optimization problem to select the parameters of the next transmitting waveform that maximizes the same expression of the noncentrality parameter subject to a ?xed transmission-energy constraint. For the OFDM model, we show that the solution of this optimization problem results in an eigenvector corresponding to the largest eigenvalue of a matrix that depends on the target, clutter, and noise parameters. However, for the CE-OFDM model we cannot improve the detection performance in this way because the noncentrality parameter does not depend on the transmitting waveform. Later in the paper, in Section V, we relax the assumption of temporal whiteness to study the effects of temporally correlated measurement noise process on our models. Temporal correlations exist in certain radar applications, in particular at high pulse repetition frequencies (PRF) [31], [32]. To model the temporal correlation matrix, we look into a branch of statistics known as the nearest neighbor analysis [33], [34], and present the consequent detection tests. To illustrate the potential of our proposed detectors, we present numerical examples in Section VI. We ?nd that the wideband OFDM model performs better than the narrowband CE-OFDM model in exploiting the multipath re?ections. In addition, we achieve signi?cant performance improvement due to adaptive OFDM waveform design. However, the CE-OFDM signal lacks such an adaptive design as the detection performance does not depend on
最前沿的ofdm国外研究成果
the transmitting coef?cients. Finally, we give concluding remarks and some thoughts on a few unaddressed issues in Section VII. Notations: We list here some notational convention that will be used throughout this paper. We use math italic for scalers, lowercase bold for vectors, and uppercase bold for matrices. For a matrix , , , , , , , , denote the transpose, conjugate-transpose, deterand th entry, generalized inverse (such that minant, ), trace, vec-operation, and block-diagonal vec-operation (de?ned in [35, eq. (7)]) of , respectively. represents an idenforms a square matrix with tity matrix of dimension . , nonzero entries only on the main diagonal. Additionally, Fig. 1. Schematic representation of the multipath scenario. , and are the inner-product, Kronecker product, and element-wise Hadamard product operators, respectively. II. PROBLEM DESCRIPTION AND MODELING We consider a far-?eld point target moving with a constant relative velocity , with respect to the radar, in a multipath-rich environment, as shown in Fig. 1. At the operating frequency, we assume that the re?ecting surfaces produce only specular re?ections of the radar signal. We assume that the radar has the complete knowledge of the environment that is under surveillance. Hence, for every range cell the radar knows the number between the radar and target and the of possible multipath direction-of-arrival (DOA) unit-vectors ( , ) along each such path. Under this scenario, we ?rst introduce the parametric measurement models for both OFDM and CE-OFDM signaling techniques. Then, we discuss our statistical assumptions on the clutter and noise. A. OFDM Measurement Model acWe consider an OFDM signaling system [15] with Hz, and pulse duration tive subcarriers, a bandwidth of of seconds. Let represents the complex weights transmitted over the subcarriers, satisfying . Then, the complex envelope of the transmitted signal can be represented as (1) where denotes the subcarrier spacing. Let be the carrier frequency of operation, then the transmitted signal is given by (2) where represents the th subcarrier frequency. Interchanging the real and summation operators, we can also rewrite (2) as (3) 80 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 1, JANUARY 2011 where (4) represents the transmitted signal due to the th subcarrier only. Then, the received signal along the th path (represented by the DOA vector ) due to only the th subcarrier can be written as (5) is a complex quantity representing the scattering coefwhere ?cient of the target along the th subchannel and th path; where is the relative Doppler shift along the th path and is the speed of propagation; is the roundtrip delay between the radar and target along the th path; represents the clutter and measurement noise along the th subchannel and th path. Therefore, the received signal over all available paths due to an -carrier OFDM signal is given by where (9) Stacking the measurements of all subchannels into
最前沿的ofdm国外研究成果
one , we get column vector of dimension (10) where ? ? is an complex diagonal matrix that contains the transmitted weights ; is an complex ? rectangular block-diagonal matrix where each nonzero , , block represents the scattering coef?cients of the target at the th subchannel over all multipath; ? is an complex vector where , , contains the Doppler information of the target at the th subchannel over all multipath; ? is a column vector containing the unknown target-velocity components; is an vector ? of clutter returns, measurement noise, and co-channel interference. Then, concatenating all the temporal data columnwise into an matrix we obtain the OFDM measurement model as follows: (11) where ? ; is an ? matrix containing the Doppler information of the target through the parameter ; is an matrix com? prising clutter returns, noise, and interference. B. CE-OFDM Measurement Model A CE-OFDM signal is realized by using a real-valued baseband OFDM signal to phase modulate the carrier. The complex envelope of a CE-OFDM transmitted signal is represented as [21] (12) where signal is the modulation index in radians and message bears an OFDM signal structure (13) are real-valued weights at difwhere ferent subcarriers. Assuming a narrowband signal model (which can be achieved with small modulation index [21]), the complex envelope of the (6) and hence the corresponding complex envelope is given as (7) Let us assume at this point that the relative time gaps between any two multipath signals are very small in comparison to the for . actual roundtrip delays, i.e., These assumptions can be justi?ed in systems where the path lengths of multipath arrivals differ little (e.g., narrow urban canyon where the range is much greater than the width). Furas the roundtrip delay corresponding to ther, let us denote the range cell under consideration. Then, the information of the roundtrip delays can be automatically incorporated into the , , model by choosing where is the pulse repetition interval (PRI) and is the number of temporal measurements within a given coherent processing interval (CPI). Hence, corresponding to a speci?c range cell containing the target, the complex envelope of the received signal at the output of the th subchannel is (8) SEN AND NEHORAI: ADAPTIVE OFDM RADAR FOR TARGET DETECTION IN MULTIPATH SCENARIOS 81 received signal corresponding to a speci?c range cell containing the target can be written as (14) is the target scattering coef?cient at the operating frewhere are roundtrip delay quency along the th path, and and and relative Doppler shift, respectively, along the th path. Then, as before assuming that all the multipath delays are for , and approximately equal, i.e., , , we can representing simplify (14) into irregularities on the re?ecting surface (e.g., windows and balconies of the buildings in an urban scenario), that cannot be modeled as specular components. Therefore, for both OFDM and CE-OFDM measureme
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 柴油机电控共轨燃油喷射系统的技术现状
- 空调系统的消声与减振(完整版)
- 汽车行业标准在线订购单
- 汽车回收与再制造行业报告
- 二甲醚与柴油混合燃料发动机燃烧性能试验
- 汽车营销资料---售后服务政策与程序
- 第20章轴结构答案
- 四强同台较量,方现真正实力-河南日报
- 发动机燃油供给技术
- pcb板编辑和完善
- 2012年汽车销售及服务行业分析报告
- 三维机 械CAD系统的二次开发技术及在风机研析中的应用
- 汽车发动机构造与维修省级精品课程doc
- 我国清洁替代燃料汽车技术发展战略及发动机行业的机遇与挑战
- 紧烧火慢揭锅的北奔-现代快报
- PCB设计流程自动化管理系统的设计与实现
- 72%高渗羟乙基淀粉20005氯化钠注射液对神经外科手术患者术中血流动力学的影响
- 神经外科重症监护患者的观察及护理
- 试论盐酸纳美芬用于神经外科血管介入手术麻醉复苏的临床观察
- 第二章 整车汽车企业典型工艺-总装
- 浅谈工业自动化控制系统安全及其防范对策[权威资料]
- [最新]神经外科病院沾染
- 20项汽车行业标准名称及主要内容
- 柴油机HCCI燃烧特点及影响因素分析
- 牙周膜牵引成骨移动牙压力侧的组织学研究
- 上海车展SUV新车成亮点-河南日报
- 机械CAD
- Global and China PCB Industry Report, 2010-2011
- 神经外科患者留置管道的风险分级管理体会
- 06卡迪拉克SGMSLS980塞威维修手册_部分1
网友关注视频
- 北师大版数学四年级下册第三单元第四节街心广场
- 沪教版八年级下册数学练习册一次函数复习题B组(P11)
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 七年级下册外研版英语M8U2reading
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
- 七年级英语下册 上海牛津版 Unit5
- 北师大版数学四年级下册3.4包装
- 沪教版八年级下册数学练习册21.3(2)分式方程P15
- 冀教版英语五年级下册第二课课程解读
- 七年级英语下册 上海牛津版 Unit9
- 河南省名校课堂七年级下册英语第一课(2020年2月10日)
- 沪教版八年级下册数学练习册21.3(3)分式方程P17
- 外研版英语七年级下册module3 unit2第二课时
- 二年级下册数学第二课
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 苏科版数学七年级下册7.2《探索平行线的性质》
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 三年级英语单词记忆下册(沪教版)第一二单元复习
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 二年级下册数学第一课
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理