Adaptive OFDM Radar for Target Detection in
上传者:刘朝英|上传时间:2015-04-24|密次下载
Adaptive OFDM Radar for Target Detection in
最前沿的ofdm国外研究成果
78IEEETRANSACTIONSONSIGNALPROCESSING,VOL.59,NO.1,JANUARY2011
AdaptiveOFDMRadarforTargetDetectionin
MultipathScenarios
SatyabrataSen,StudentMember,IEEE,andAryeNehorai,Fellow,IEEE
Abstract—Wedevelopmethodsfordetectingamovingtargetinthepresenceofmultipathre?ections,whichexist,forexample,inurbanenvironments.Wetakeadvantageofthemultipathprop-agationthatincreasesthespatialdiversityoftheradarsystemandprovidesdifferentDopplershiftsoverdifferentpaths.Weemployabroadbandorthogonalfrequencydivisionmultiplexing(OFDM)signaltoincreasethefrequencydiversityofthesystemasdifferentscatteringcentersofatargetresonatevariablyatdifferentfrequencies.Toovercomethepeak-to-averagepowerratio(PAPR)problemoftheconventionalOFDM,wealsouseconstant-envelopeOFDM(CE-OFDM)signalingscheme.First,weconsiderasimplescenarioinwhichtheradarreceivesonlya?nitenumberofspecularlyre?ectedmultipathsignals.Wedevelopparametricmeasurementmodels,forboththeOFDMandCE-OFDMsignalingmethods,underthegeneralizedmulti-variateanalysisofvariance(GMANOVA)frameworkandemploythegeneralizedlikelihoodratio(GLR)teststodecideaboutthepresenceofatargetinaparticularrangecell.Then,weproposeanalgorithmtooptimallydesigntheparametersoftheOFDMtransmittingwaveformforthenextcoherentprocessinginterval.Inaddition,weextendourmodelstostudytheaspectsoftemporalcorrelationsinthemeasurementnoise.Weprovideafewnumer-icalexamplestoillustratetheperformancecharacteristicsoftheproposeddetectorsanddemonstratetheachievedperformanceimprovementduetoadaptiveOFDMwaveformdesign.
IndexTerms—Adaptivewaveformdesign,asymptoticperfor-manceanalysis,multipath,OFDMradar,targetdetection,urbanscenarios.
I.INTRODUCTION
HEproblemofdetectionandtrackingtargetsinthepres-enceofmultipath,particularlyinurbanenvironments,arebecomingincreasinglyrelevantandchallengingtoradartechnologies.In[1],wehaveshownthatthetargetdetectioncapabilitycanbesigni?cantlyimprovedbyexploitingmultipleDopplershiftscorrespondingtotheprojectionsofthetargetvelocityoneachofthemultipathcomponents.Furthermore,themultipathpropagationsincreasethespatialdiversityoftheradarsystembyprovidingextra“looks”atthetargetandthusenablingtargetdetectionandtrackingevenbeyondtheline-of-sight(LOS)
ManuscriptreceivedJanuary04,2010;acceptedOctober04,2010.DateofpublicationOctober11,2010;dateofcurrentversionDecember17,2010.ThisworkwassupportedbytheDepartmentofDefenseundertheAirForceOf-?ceofScienti?cResearchMURIGrantFA9550-05-1-0443andONRGrantN000140810849.Theassociateeditorcoordinatingthereviewofthismanu-scriptandapprovingitforpublicationwasDr.DenizErdogmus.
TheauthorsarewiththeDepartmentofElectricalandSystemsEngineering,WashingtonUniversityinSt.Louis,St.Louis,MO63130USA(e-mail:ssen3@ese.wustl.edu;nehorai@ese.wustl.edu).
Colorversionsofoneormoreofthe?guresinthispaperareavailableonlineathttp://wendang.chazidian.com.
DigitalObjectIdenti?er10.1109/TSP.2010.2086448
T
[2],[3].Otherareasofapplicationinwhichmultipatheffectsareofprimaryinterestareinlow-angletracking(sea-skimmers)[4]–[7],height?nding[8],[9],andradar-aidednavigationandlandingsystems[10].Similarproblemshavebeenaddressedinsonarliteratureduetobottombounceinshallowwaters[11],[12].Notethatin[13]wehavedemonstratedthatthedirection-?ndingcapabilityofaradarsystemcanbeimprovedalsobyexploitingmultipathre?ectionsclosetothesensors.
Toresolveandexploitthemultipathcomponentsitisgener-allycommontouseshortpulse,multi-carrierwidebandradarsignals.Weconsidertheorthogonalfrequencydivisionmulti-plexing(OFDM)signalingscheme[14],[15],whichisoneofthewaystoaccomplishsimultaneoususeofseveralsubcarriers.TheuseofOFDMsignalmitigatesthepossiblefading,resolvesthemultipathre?ections,andprovidesadditionalfrequencydi-versityasdifferentscatteringcentersofatargetresonateatdif-ferentfrequencies.
AlthoughOFDMhasbeenelaboratelystudiedandcom-mercializedinthedigitalcommunication?eld[16],ithasnotsowidelybeenstudiedbytheradarcommunityapartfromafewrecentefforts[17]–[19].OneofmajorreasonsofsuchunpopularityisthatOFDMhasatime-varyingenvelopeandthatoriginatesapotentiallyhighpeak-to-averagepowerratio(PAPR)[20],[21].AhighvalueofPAPRdemandsforsystemcomponents(e.g.,transmitter’spowerampli?er)withalargelinearregionofoperation.However,practicalpowerampli?ersoperateoverlimitedlinearregion,beyondwhichtheysaturatecausingnonlineardistortiontothesignal[22].
Overtheyears,anumberofapproacheshavebeenproposedtodealwiththePAPRproblem.AcomprehensivesurveyofPAPRreductiontechniquescanbefoundin[20]and[23,Ch.6].OneofsuchmethodsistoapplythephasemodulationtransformthatachievesthelowestpossiblePAPR(0dB).Inthiswork,besidesconsideringconventionalOFDM,wealsoincludetheconstant-envelopeOFDM(CE-OFDM)signalingscheme[21],[24]–[27],whichisbasedonusingareal-valuedbasebandOFDMsignaltophasemodulatethecarrier.
First,wediscussadetectionprobleminwhichtheradarhasthecompleteknowledgeofthe?rst-order(orsinglebounce)specularlyre?ectedmultipathsignals.Wealsoassumethattheclutterandmeasurementnoisearetemporallywhite.InSectionII,wedevelopthemeasurementmodels,forboththeOFDMandCE-OFDMsignalingschemes,underthegeneralizedmultivariateanalysisofvariance(GMANOVA)framework[28],[29].Basedonthesemodels,inSectionIII,weformulatethedetectionproblemasahypothesistesttodecideaboutthepresenceofatargetinaparticularrangecell.Duetothelackofknowledgeofalltheparametersinourmodels,
1053-587X/$26.00©2010IEEE
最前沿的ofdm国外研究成果
SENANDNEHORAI:ADAPTIVEOFDMRADARFORTARGETDETECTIONINMULTIPATHSCENARIOS79
weemploythegeneralizedlikelihoodratio(GLR)test[30,Ch.6].Wepresentnumericalresultstoevaluatetheperformanceoftheseproposeddetectors,aswedonothaveanyanalyticalexpressionstoevaluatetheirperformances.
Then,inSectionIV,weproposeacriteriontoadaptivelycomputetheparametersofthenexttransmittingwaveform.Toconstructsuchacriterionwe?rstlookintotheperformancecharacteristicsoftheGLRteststatisticsforbothOFDMandCE-OFDMmodelsassumingthatthetargetvelocityisknown.However,thisanalysisdoesnotcharacterizethedetectionper-formanceofourdetectors,inwhichthetargetvelocityisun-known.TheanalysiswithknowntargetvelocityshowsthattheGLRtestresultsinconstantfalsealarmrate(CFAR)detectorsforbothOFDM(withlargenumberoftemporalsamples)andCE-OFDM(with?nitenumberoftemporalsample)models,andthedetectionperformancesdependonthesystemparametersthroughthecorrespondingnoncentralityparametersofthedis-tributionsunderalternatehypothesis.Thisimpliesthatitispos-sibletoimprovethedetectionperformancebymaximizingthesenoncentralityparameters.Weapplythisideatoourproblemandformulatetheoptimizationproblemtoselecttheparametersofthenexttransmittingwaveformthatmaximizesthesameex-pressionofthenoncentralityparametersubjecttoa?xedtrans-mission-energyconstraint.FortheOFDMmodel,weshowthatthesolutionofthisoptimizationproblemresultsinaneigen-vectorcorrespondingtothelargesteigenvalueofamatrixthatdependsonthetarget,clutter,andnoiseparameters.However,fortheCE-OFDMmodelwecannotimprovethedetectionper-formanceinthiswaybecausethenoncentralityparameterdoesnotdependonthetransmittingwaveform.
Laterinthepaper,inSectionV,werelaxtheassumptionoftemporalwhitenesstostudytheeffectsoftemporallycor-relatedmeasurementnoiseprocessonourmodels.Temporalcorrelationsexistincertainradarapplications,inparticularathighpulserepetitionfrequencies(PRF)[31],[32].Tomodelthetemporalcorrelationmatrix,welookintoabranchofstatisticsknownasthenearestneighboranalysis[33],[34],andpresenttheconsequentdetectiontests.
Toillustratethepotentialofourproposeddetectors,wepresentnumericalexamplesinSectionVI.We?ndthatthewidebandOFDMmodelperformsbetterthanthenarrowbandCE-OFDMmodelinexploitingthemultipathre?ections.Inaddition,weachievesigni?cantperformanceimprovementduetoadaptiveOFDMwaveformdesign.However,theCE-OFDMsignallackssuchanadaptivedesignasthedetectionper-formancedoesnotdependonthetransmittingcoef?cients.Finally,wegiveconcludingremarksandsomethoughtsonafewunaddressedissuesinSectionVII.
Notations:Welistheresomenotationalconventionthatwillbeusedthroughoutthispaper.Weusemathitalicforscalers,lowercaseboldforvectors,anduppercaseboldformatrices.Fora
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看matrix
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看,
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看,
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看,
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看,
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看,
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看,
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看,,
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看and
denotethetranspose,conjugate-transpose,deter-
内容需要下载文档才能查看minant,
thentry,generalizedinverse(such
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看that),trace,vec-operation,andblock-diagonalvec-operation(de-?nedin[35,eq.(7)])
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看of,
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看respectively.representsaniden-titymatrixof
内容需要下载文档才能查看dimension
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看.
formsasquarematrixwithnonzeroentriesonlyonthemaindiagonal.Additionally,
内容需要下载文档才能查看,Fig.1.Schematicrepresentationofthemultipath
内容需要下载文档才能查看scenario.
,
内容需要下载文档才能查看andaretheinner-product,Kroneckerproduct,andele-ment-wiseHadamardproductoperators,respectively.
II.PROBLEMDESCRIPTIONANDMODELING
Weconsiderafar-?eldpointtargetmovingwithaconstantrelative
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看velocity,withrespecttotheradar,inamultipath-richenvironment,asshowninFig.1.Attheoperatingfrequency,weassumethatthere?ectingsurfacesproduceonlyspecularre-?ectionsoftheradarsignal.Weassumethattheradarhasthecompleteknowledgeoftheenvironmentthatisundersurveil-lance.Hence,foreveryrangecelltheradarknowsthenumber
ofpossible
内容需要下载文档才能查看multipath
betweentheradarandtargetandthedirection-of-arrival(DOA)unit-vectors
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看(
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看,
)alongeachsuchpath.Underthisscenario,we?rstintro-ducetheparametricmeasurementmodelsforbothOFDMandCE-OFDMsignalingtechniques.Then,wediscussourstatis-ticalassumptionsontheclutterandnoise.A.OFDMMeasurementModel
WeconsideranOFDMsignalingsystem[15]
内容需要下载文档才能查看with
ac-tivesubcarriers,abandwidth
内容需要下载文档才能查看of
Hz,andpulseduration
内容需要下载文档才能查看ofseconds.
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看Letrepresentsthecomplexweightstransmittedover
内容需要下载文档才能查看thesubcarriers,
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看satisfying
.Then,thecomplexenvelopeofthetransmitted
signalcanberepresented
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看as
(1)
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看wheredenotesthesubcarrierspacing.
内容需要下载文档才能查看Letbethecarrierfrequencyofoperation,thenthetransmittedsignalisgiven
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看by
(2)
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看whererepresentsthethsubcarrierfrequency.Interchangingtherealandsummationoperators,wecanalsorewrite(2)
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看as
(3)
最前沿的ofdm国外研究成果
etection problem as a hypothesis test to decide about the presence of a target in a particular range cell. Due to the lack of knowledge of all the parameters in our models, 1053-587X/$26.00 © 2010 IEEE SEN AND NEHORAI: ADAPTIVE OFDM RADAR FOR TARGET DETECTION IN MULTIPATH SCENARIOS 79 we employ the generalized likelihood ratio (GLR) test [30, Ch. 6]. We present numerical results to evaluate the performance of these proposed detectors, as we do not have any analytical expressions to evaluate their performances. Then, in Section IV, we propose a criterion to adaptively compute the parameters of the next transmitting waveform. To construct such a criterion we ?rst look into the performance characteristics of the GLR test statistics for both OFDM and CE-OFDM models assuming that the target velocity is known. However, this analysis does not characterize the detection performance of our detectors, in which the target velocity is unknown. The analysis with known target velocity shows that the GLR test results in constant false alarm rate (CFAR) detectors for both OFDM (with large number of temporal samples) and CE-OFDM (with ?nite number of temporal sample) models, and the detection performances depend on the system parameters through the corresponding noncentrality parameters of the distributions under alternate hypothesis. This implies that it is possible to improve the detection performance by maximizing these noncentrality parameters. We apply this idea to our problem and formulate the optimization problem to select the parameters of the next transmitting waveform that maximizes the same expression of the noncentrality parameter subject to a ?xed transmission-energy constraint. For the OFDM model, we show that the solution of this optimization problem results in an eigenvector corresponding to the largest eigenvalue of a matrix that depends on the target, clutter, and noise parameters. However, for the CE-OFDM model we cannot improve the detection performance in this way because the noncentrality parameter does not depend on the transmitting waveform. Later in the paper, in Section V, we relax the assumption of temporal whiteness to study the effects of temporally correlated measurement noise process on our models. Temporal correlations exist in certain radar applications, in particular at high pulse repetition frequencies (PRF) [31], [32]. To model the temporal correlation matrix, we look into a branch of statistics known as the nearest neighbor analysis [33], [34], and present the consequent detection tests. To illustrate the potential of our proposed detectors, we present numerical examples in Section VI. We ?nd that the wideband OFDM model performs better than the narrowband CE-OFDM model in exploiting the multipath re?ections. In addition, we achieve signi?cant performance improvement due to adaptive OFDM waveform design. However, the CE-OFDM signal lacks such an adaptive design as the detection performance does not depend on
最前沿的ofdm国外研究成果
the transmitting coef?cients. Finally, we give concluding remarks and some thoughts on a few unaddressed issues in Section VII. Notations: We list here some notational convention that will be used throughout this paper. We use math italic for scalers, lowercase bold for vectors, and uppercase bold for matrices. For a matrix , , , , , , , , denote the transpose, conjugate-transpose, deterand th entry, generalized inverse (such that minant, ), trace, vec-operation, and block-diagonal vec-operation (de?ned in [35, eq. (7)]) of , respectively. represents an idenforms a square matrix with tity matrix of dimension . , nonzero entries only on the main diagonal. Additionally, Fig. 1. Schematic representation of the multipath scenario. , and are the inner-product, Kronecker product, and element-wise Hadamard product operators, respectively. II. PROBLEM DESCRIPTION AND MODELING We consider a far-?eld point target moving with a constant relative velocity , with respect to the radar, in a multipath-rich environment, as shown in Fig. 1. At the operating frequency, we assume that the re?ecting surfaces produce only specular re?ections of the radar signal. We assume that the radar has the complete knowledge of the environment that is under surveillance. Hence, for every range cell the radar knows the number between the radar and target and the of possible multipath direction-of-arrival (DOA) unit-vectors ( , ) along each such path. Under this scenario, we ?rst introduce the parametric measurement models for both OFDM and CE-OFDM signaling techniques. Then, we discuss our statistical assumptions on the clutter and noise. A. OFDM Measurement Model acWe consider an OFDM signaling system [15] with Hz, and pulse duration tive subcarriers, a bandwidth of of seconds. Let represents the complex weights transmitted over the subcarriers, satisfying . Then, the complex envelope of the transmitted signal can be represented as (1) where denotes the subcarrier spacing. Let be the carrier frequency of operation, then the transmitted signal is given by (2) where represents the th subcarrier frequency. Interchanging the real and summation operators, we can also rewrite (2) as (3) 80 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 1, JANUARY 2011 where (4) represents the transmitted signal due to the th subcarrier only. Then, the received signal along the th path (represented by the DOA vector ) due to only the th subcarrier can be written as (5) is a complex quantity representing the scattering coefwhere ?cient of the target along the th subchannel and th path; where is the relative Doppler shift along the th path and is the speed of propagation; is the roundtrip delay between the radar and target along the th path; represents the clutter and measurement noise along the th subchannel and th path. Therefore, the received signal over all available paths due to an -carrier OFDM signal is given by where (9) Stacking the measurements of all subchannels into
最前沿的ofdm国外研究成果
one , we get column vector of dimension (10) where ? ? is an complex diagonal matrix that contains the transmitted weights ; is an complex ? rectangular block-diagonal matrix where each nonzero , , block represents the scattering coef?cients of the target at the th subchannel over all multipath; ? is an complex vector where , , contains the Doppler information of the target at the th subchannel over all multipath; ? is a column vector containing the unknown target-velocity components; is an vector ? of clutter returns, measurement noise, and co-channel interference. Then, concatenating all the temporal data columnwise into an matrix we obtain the OFDM measurement model as follows: (11) where ? ; is an ? matrix containing the Doppler information of the target through the parameter ; is an matrix com? prising clutter returns, noise, and interference. B. CE-OFDM Measurement Model A CE-OFDM signal is realized by using a real-valued baseband OFDM signal to phase modulate the carrier. The complex envelope of a CE-OFDM transmitted signal is represented as [21] (12) where signal is the modulation index in radians and message bears an OFDM signal structure (13) are real-valued weights at difwhere ferent subcarriers. Assuming a narrowband signal model (which can be achieved with small modulation index [21]), the complex envelope of the (6) and hence the corresponding complex envelope is given as (7) Let us assume at this point that the relative time gaps between any two multipath signals are very small in comparison to the for . actual roundtrip delays, i.e., These assumptions can be justi?ed in systems where the path lengths of multipath arrivals differ little (e.g., narrow urban canyon where the range is much greater than the width). Furas the roundtrip delay corresponding to ther, let us denote the range cell under consideration. Then, the information of the roundtrip delays can be automatically incorporated into the , , model by choosing where is the pulse repetition interval (PRI) and is the number of temporal measurements within a given coherent processing interval (CPI). Hence, corresponding to a speci?c range cell containing the target, the complex envelope of the received signal at the output of the th subchannel is (8) SEN AND NEHORAI: ADAPTIVE OFDM RADAR FOR TARGET DETECTION IN MULTIPATH SCENARIOS 81 received signal corresponding to a speci?c range cell containing the target can be written as (14) is the target scattering coef?cient at the operating frewhere are roundtrip delay quency along the th path, and and and relative Doppler shift, respectively, along the th path. Then, as before assuming that all the multipath delays are for , and approximately equal, i.e., , , we can representing simplify (14) into irregularities on the re?ecting surface (e.g., windows and balconies of the buildings in an urban scenario), that cannot be modeled as specular components. Therefore, for both OFDM and CE-OFDM measureme
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 2016房产税开征最新政策解读
- 学校办公室主任竞聘演讲稿
- 护士长岗位竞聘演讲稿
- 银行竞聘上岗演讲稿
- 退伍军人建军节演讲稿
- 关于2016年北京买房新政策
- 2016年最新政策教师工资上调
- 关于2016劳动合同法实施条例解读
- 2016食品安全法实施条例全文
- 2016年土地管理法实施条例全文
- 关于2016首套房贷款利率优惠政策
- 关于2016年稳岗补贴政策解读
- 在所有党的纪律和规矩中第一位的是什么
- 关于治安管理处罚条例全文解读
- 关于八一建军节演讲稿
- 法院工作忠诚教育心得体会
- 事故调查报告范文
- 2016印花税暂行条例解读
- 解读2016疫苗流通和预防接种管理条例
- 关于2016物业管理条例全文解读
- 幼儿园教师培训学习心得
- 2016年三支一扶政策
- 2016最新灵活就业人员养老保险政策解读
- 关于作风建设永远在路上学习心得体会
- 2016烟花爆竹安全管理条例全文
- 争做四讲四有党员演讲稿
- 关于2016职工带薪年休假条例解读
- 2016年营改增政策的变化
- 医疗器械监督管理条例相关问题解读
- 关于2016年个体工商户条例全文解读
网友关注视频
- 北师大版小学数学四年级下册第15课小数乘小数一
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 《小学数学二年级下册》第二单元测试题讲解
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 三年级英语单词记忆下册(沪教版)第一二单元复习
- 外研版英语七年级下册module3 unit2第二课时
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 冀教版小学数学二年级下册第二单元《租船问题》
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
- 冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 苏科版数学 八年级下册 第八章第二节 可能性的大小
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
- 河南省名校课堂七年级下册英语第一课(2020年2月10日)
- 二年级下册数学第三课 搭一搭⚖⚖
- 外研版英语七年级下册module3 unit1第二课时
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 人教版二年级下册数学
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 沪教版八年级下册数学练习册21.3(2)分式方程P15
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 外研版英语三起5年级下册(14版)Module3 Unit1
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理