教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> > 化学> Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel

Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel

高Mn合金元素TWIP钢微观组织和织构演变

Available online at http://wendang.chazidian.com

ActaMaterialia57(2009)

内容需要下载文档才能查看 内容需要下载文档才能查看

1512–1524

http://wendang.chazidian.com/locate/actamat

Microstructureandtextureevolutionduringcoldrolling

andannealingofahighMnTWIPsteel

L.Brackea,1,K.Verbekena,b,*,L.Kestensa,c,J.Penninga

a

DepartmentofMaterialsScienceandEngineering,FacultyofEngineering,GhentUniversity(UGent),Technologiepark903,B-9052Ghent,Belgium

b

MicrostructurePhysics,Max-Planck-Institutfu¨rEisenforschung,Max-Planck-Strasse1,40237Du¨sseldorf,Germanyc

MaterialsScienceandEngineeringDepartment,DelftUniversityofTechnology,Mekelweg2,2628CDDelft,TheNetherlands

Received28March2008;receivedinrevisedform25November2008;accepted27November2008

Availableonline7January2009

Abstract

Themicrostructureduringcoldrollingandannealingofalow-stackingfaultenergyausteniticFe–Mn–Calloywasstudiedbymeansofelectronmicroscopy.Thecontributionofbothslipandmicrotwinningtothedevelopmentofabrass-typecold-rollingtexturewasillustrated.Duringsubsequentrecrystallizationannealing,aretainedrollingtexturewasobserved.Itwasshownthatthemechanismbehindthisphenomenonwasbasedonthenucleationandgrowthoftherecrystallizedstatewithoutpreferredorientationinanenerget-icallyrelativelyhomogeneousmicrostructure.

Ó2008ActaMaterialiaInc.PublishedbyElsevierLtd.Allrightsreserved.

Keywords:Austeniticsteels;Deformationtexture;Recrystallizationtexture;Transmissionelectronmicroscopy;Electronbackscatterdi raction

1.Introduction

Thecurrenttrendintheautomotiveindustryistoreducevehicleweightinordertodecreasefuelconsumptionandtheassociatedemissionsofgreenhousegases.Hence,astringentneedhasemergedforhigh-strengthmaterialswithexcellentformability,whichhasledtothedevelopmentofnewalloysingeneral,andsteelsinparticular.Typicalexamplesofnewhigh-strengthsteelgradesarethefer-rite–martensitedualphase(DP)steelsandthemultiphasesteelsexhibitingatransformation-inducedplasticity(TRIP)e ect.DPandTRIPsteelscanreadilyachieveulti-matetensilestrength(UTS)levelsintherange600–1000MPaincombinationwithelongationsintherange

Correspondingauthor.Address:DepartmentofMaterialsScienceandEngineering,FacultyofEngineering,GhentUniversity(UGent),Tech-nologiepark903,B-9052Ghent,Belgium.Tel.:+3292645784;fax:+3292645833.

E-mailaddress:kim.verbeken@ugent.be(K.Verbeken).1

Presentaddress:CorusResearch,DevelopmentandTechnology,P.O.Box10000,1970CAIjmuiden,TheNetherlands.

*

15–25%.Suchpropertiesmakethesesteelsveryattractiveforautomotiveapplicationswherehighstrengthisrequired.Forapplicationsrequiringimprovedformability,e.g.,fortheproductionofcomplexpartsinoneformingoperation,austeniticsteelgradesareaverypromisinggroupofmaterials.Themechanicalbehaviourand,inpar-ticular,thestrainhardening,ofthesesteelslargelydependonthestackingfaultenergy(SFE),becausethismaterialparameterdetermineswhichdeformationmechanismwillbeactivated[1–4].WithalowerSFE,thedeformationmechanismchangesfromslipofperfectdislocationstoslipofpartials,tomechanicaltwinningandeventuallytotrans-formationintohcpe-martensiteand/orbcc/bcta0-martens-ite.Itisimportant,though,tobearinmindthatthegreaterpartoftheplasticslipisaccommodatedthroughslipofdis-locations,regardlessoftheactivationofotherdeformationmechanisms.

ThecriticalvalueoftheSFEforthetransitionfrome-mar-tensiteformationtomechanicaltwinningisofspeci cinterest,astwinningisexpectedtoincreaseboththeUTSandtheuni-formelongation,aphenomenonknownasthetwinning-inducedplasticity(TWIP)e ect[5,6].AccordingtoOhetal.

1359-6454/$34.00Ó2008ActaMaterialiaInc.PublishedbyElsevierLtd.Allrightsreserved.doi:10.1016/j.actamat.2008.11.036

高Mn合金元素TWIP钢微观组织和织构演变

L.Brackeetal./ActaMaterialia57(2009)1512–15241513

[1],twinningoccurswhenanalloyhasaSFE>18mJmÀ2,whiletheformationofe-martensiterequireslowervalues.Allainetal.[2]calculatedthattwinningcanoccurforaSFEbetween12and35mJmÀ2,wherease-martensitecanbe

formedforSFEvalues<18mJmÀ2.TheresultsofRe

´myandPineau[3]indicatethattheminimumSFErequiredformechanicaltwinningis9mJmÀ2,whilee-martensitecanbeformedwhentheSFEdoesnotexceed12mJmÀ2.Takingintoaccountthedi cultiesinreliablydeterminingtheSFEandthedi erentcompositionsofthealloysinthesestudies,theagree-mentbetweenthedi erentliteraturedataisreasonablygood.TheSFEisknowntohaveastrongin uenceonthedevelopmentofthecrystallographictextureduringcoldrolling.High-SFEmaterialssuchasAl,CuandNiatroomtemperature,whichdonotdeformbytwinning,developaCuorpuremetaltexture,whichischaracterizedbyastrongb- bre,withanincreasingintensityfromthebrasscomponent,overtheStothecoppercomponent[7–10].Low-SFEmaterialsthatcantypicallydeformbytwinningdevelopabrassoralloytexturewithalowerintensityonthecoppercomponentandanincreasedoneonthebrassandGosscomponents,i.e.,thefcca- bre.Thedevelop-mentofsuchatextureisoftenattributedtomechanicaltwinning[11,12].Ithasalsobeenreportedthatmechanicaltwinninginitselfisnotresponsibleforthedevelopmentofabrasstexture,butthatitinitiatestheformationofmacro-scopicshearbandsresultinginabrasstexture[13].Abrass-typetextureevolutionhasalsobeenobservedinlow-SFEmaterialsbeforetwinningwasobserved[9].Inthiscase,thetexturedevelopmentwasattributedtomicroscopicshearbands[9].Inlow-SFEmaterials,thepartialdisloca-tionsformingthestackingfault(SF)arewidelyseparated.Thisrestrictsthepossibilitiesforcross-slip,astherequiredperfectscreworientationforacross-slippingdislocationcanonlybeachievedbyrecombinationofthetwopartials.Hence,theslipisrestrictedtotheplaneinwhichtheSForiginated,i.e.,planarslip.Recently,thein uenceoftheplanarityoftheslipsystemsandthelocalizationofslipinfccmetalswithalowSFEhasbeenmodelledbyMirigliaetal.[14].Theyfoundthattheirmodelcouldonlypartiallyaccountfortheexperimentalobservations.Texturestudiesoflow-SFEausteniticsteelsrevealtheimportanceofstrain-inducedtransformationofaustenitetoa0-martensite[15].Thegeneraltendencyoftheaustenitetexturedevelop-mentinthatcaseisstilltheformationofabrass-typetex-ture,evenwhennotwinninghasoccurred.However,theappearanceofstrain-induceda0-martensiteisexpectedtoslowdownthedevelopmentofthebrass-typetexture[16].Whilethetextureevolutionduringcoldrollingoflow-SFEmaterialsisfairlywellunderstood,muchlessclarityexistsontherecrystallizationbehaviour.High-SFEmateri-als,suchasAl,CuandNi,typicallyshowarecrystalliza-tiontexturedominatedbythecubecomponent.Severalstudieslinkthistoaselectivegrowthmechanism[17–21],whileotherspointtoorientednucleation,basedonthelow-storedenergyofthecubeorientation[22,23].Forlow-SFEmaterials,however,therecrystallizationtextures

areevenlessunderstood[8].AstudybyLu¨cke[24]onCu-basedalloyswithdi erentSFEshowedthat,withdecreasingSFE,the{236}h385i(Eulerangles:u1=79°,U=31°,u2=34°)componentbecamethedominanttex-turecomponent.Veryfewdataontherecrystallizationtex-tureoflow-SFEausteniticsteelsareavailableintheliterature.OneexampleistherecentworkbyVercammen[25]onaFe–30Mn–3Si–3AlausteniticsteelwithaSFEof40mJmÀ2inwhichasmallcubecomponentwasobservedafterrecrystallizationannealing.

Theaimofthepresentworkistostudythedeformationbehaviourandtherecrystallizationmechanismofalow-SFEFe–Mn–C-basedTWIPalloy.Therefore,adetailedanalysisofthemicrostructureandtextureevolutionwascarriedout.2.Experimental

Thematerialstudiedforthestudyofthecold-rolledmicrostructureandtextureisafullyausteniticFe–22%MnalloywithconsiderableamountsofCandNtostabi-lizetheausteniteatroomtemperature.TheSFEofthismaterialwas15mJmÀ2[26].Thematerialwascastasan80-kgingotinalaboratoryvacuummeltingandcastingunitunderaprotectiveN2atmosphereof1013hPa.Afterreheatingat1473K,thematerialwashotrolledonalabo-ratorymillfrom20to3mminfourpasses,maintainingthe nishingtemperature>1223Ktoallowforstaticrecrystal-lizationbeforewaterquenching.Samplesofthehot-rolledstripwerecoldrolledwithtotalreductionsrangingfrom5%to50%(cf.Table1).

Therecrystallizationannealingtreatmentswereper-formedinsaltbathfurnacesatdi erenttemperaturesbetween673and998Kfor120swithintervalsof25Kandataconstanttemperatureof998Kforannealingtimesbetween10and120s.Thesamplesforthesetreatmentswereall50%coldrolled.

Therecrystallizedfraction(%ReX)wasderivedfromtheVickershardness(HV3)measurements,whichwereper-formedwithaloadof29.4N(HV3)usingaZwick3212hardnesstester.Atleastthreetestswereperformedperdatapoint.Formeasurementswithaspread>10HV3,atleast vemeasurementsweredoneperdatapoint.TexturemeasurementsbymeansofX-raydi ractionwereper-formedonaSiemensD5000di ractometer,usingMoKaradiation(k=0.070926nm)at50kVand50mA,bymea-suringpole guresandcalculatingorientationdistributionfunctions(ODF).The{100},{110},{211}and{310}incompletepole guresweremeasuredbytheSchultzre ectionmethodusingaEulercradlegoniometer.The

Table1

Overviewoftheappliedrollingstrains:engineeringstrainvalues(e)andlogarithmictruestrainvalues(e).e

0.050.100.200.300.400.50 ¼Intinit

0.05

0.11

0.22

0.36

0.51

0.69

高Mn合金元素TWIP钢微观组织和织构演变

1514L.Brackeetal./ActaMaterialia57(2009)1512–1524

ODFwerecalculatedwiththeMTM-FHMsoftwaredevel-opedbyVanHoutte[27].

AZeissDSM962scanningelectronmicroscopeoper-atedat15kVwasusedformicrostructuralinvestigation.Electronbackscatterdi raction(EBSD)measurementswerecarriedoutontheplaneparalleltotherollingandnormaldirection.Scanswithstepsizes0.1–0.5lmwerecarriedoutonaFEIXL30ESEMequippedwithaLaB6- lament,usingaTSL–OIMEBSDattachment.ThesamplepreparationforXRDandOIMobservationscon-sistedinmechanicalpolishingwith1lmdiamondpaste,followedbymechanicalpolishingwithStruersOPSsolu-tion.Noetchingwasapplied.

TheKernellaveragemisorientation(KAM)wasusedtoillustratetheenergetichomogeneityofthecold-rolledstructure.TheKAMisameasureoflocalmisorientationandisdeterminedasfollows.ForeachpointmeasuredintheEBSDscan,theaveragemisorientationofthatpointanditsneighboursiscalculatedusingTSL–OIMsoftware,undertheconditionthatmisorientationsexceedingsometolerancevalue,e.g.,5°,arediscarded.Thisisnecessarytoexcludethee ectoflargemisorientations,e.g.,duetothepresenceofagrainboundary.

Thepartitioningbetweenrecrystallizedandunrecrystal-lizedregionswasdone,basedonthegrainorientationspread(GOS)parameter,asdeterminedintheEBSDmea-surements.Thisparameterhasalreadybeenusedelsewhereforthesamepurposesinaluminiumalloys[28,29].Thecal-culationoftheGOSisdoneintwosteps.Theaveragecrys-tallographicorientationofallthepointswithinagrainiscalculated rst.TheGOSistheaveragedeviationbetweentheorientationofeachindividualpixelandtheaverageori-entationofthegrain.Whenthisisdoneforeverygrain,aGOSdistributioncanbedeterminedforthecompletemeasurement.

Asdeformedgrainspossessinternalorientationgradi-ents,theyproducehigherGOSvalues.Consequently,thisparameterallowsonetodistinguishbetweendeformedandrecrystallizedgrains.Otherstudies(e.g.,Ref.[30])haveusedtothispurposetheimagequality(IQ)parameter,whichquanti esthesharpnessoftheEBSDpatterns.Itwaspointedout,however,thatclearlydeformedgrains

canstillexhibitareasonablyhighIQfactor,whichmakesthisparameterunsuitablefordeterminingtherecrystallizedfraction.GrainswithanaverageCon denceIndex(CI)<0.1wereexcluded,althoughthishadalmostnoe ectonthefractionsobtained.

Thinfoiltransmissionelectronmicroscopy(TEM)wasperformedonaPhilipsEM420operatedat120kVandonaPhilipsCM200FEGoperatedat200kV.The nalsamplepreparationconsistedindoublejetelectrolyticpol-ishingwithaStruersTenupol5,operatedatavoltageof32V.Theusedelectrolytewasasolutionof93%CH3COOHand7%HClO4atatemperatureof285K.3.Results

3.1.Microstructureinthecold-rolledstate

Fig.1showsmicrographsofthealloybefore(Fig.1a)andaftercoldrolling(e=0.22)(Fig.1b)ande=0.51(Fig.1c).

Thelocalizeddeformationlinesinthecold-rolledspeci-menmaypresumablybeattributedtoextensivetwinningofthealloyduringdeformation,butitwillbeshownlaterthattheselinescanalsobesliplineswithoutanytraceoftwin-ning.Athigherstrains(e=0.51),thelamellardeformationstructurerevealsmacroscopicshearbands,cf.Fig.1c.Thistypeofshearbandsisadirectconsequenceofexcessivemechanicaltwinning[13,31].Itwasnotpossibletoverifywhethermorepronouncedmacroscopicshearbandingoccursathigherrollingstrains,becausethemaximumforceoftheusedlaboratoryrollingmillwasnotsu cienttoreducethethicknessofthesamplefurther.

Fig.2showsEBSDresultsforthreesimilarlookingdeformedareasaftercoldrollingtoastrainofe=0.51(1–3)andofanotherareacoldrolledtoe=0.22(4).

Theseareaswereselectedfromafullmeasurementbymeansofthepost-processingTSL–OIMsoftware.Themis-orientationpro lesofthesedeformedareasshowcleardif-ferences(cf.Fig.3).

Inarea1,twomisorientationpro lesweredetermined,butnonerevealedthepresenceofamisorientationangleof60°,whichistypicalforatwinrelationship,andso

内容需要下载文档才能查看

it

Fig.1.SEMimagesof(a)thehot-rolledmicrostructure,(b)aftercoldrolling(e=0.22).Thearrowsindicateprobablemicrotwins,(c)aftercoldrolling(e=0.51):onsetofmacroscopicshearbanding.(Imagesobtainedwithbackscatterelectroncontrast.)

高Mn合金元素TWIP钢微观组织和织构演变

L.Brackeetal./ActaMaterialia57(2009)1512–15241515

Fig.2.EBSDorientationcontrastscansoffourselecteddeformedareas.(1–3,e=0.51;4,e=0.22);colouredaccordingtoanNDinversepole gurekey.Thearrowsindicatethedirectionsinwhichthemisorientationpro lesweretaken(cf.Fig.3).

couldbeconcludedthatdeformationonlyoccurredbyslip.AR3twininfcccanbecrystallographicallydescribedbytherotationoftheparentcrystalaroundah111iaxisoveranangleof60°.Amisorientationpro lesimilartoareas1aand1bwasfoundforarea2.Itcanbeseenthatthemisori-entationpro lesshowseveralpeaksafewmicronswide,whichsuggeststhattheslipislocalized.

Themisorientationpro leinarea3clearlyshowsanumberoftwinboundaries.Thewidthofthepoint-to-ori-ginmisorientationpeaksofthetwinnedregionsisoftheorderof1lmandcorrespondstobundlesofmicrotwins.Individualmicrotwins,asobservedwithTEM(seebelow),cannotbedistinguishedwiththeEBSDequipment,butitwillbeshownthattheseverysmallmicrotwinsformthickerbandsoflocalizeddeformation,whichcanberesolved.Anotherexampleofdensebundlesofmicrotwinsispre-sentedinarea4.Itmustbenoticedthatthecold-rollingstrainforarea4wase=0.22,whileforareas1–3itwase=0.51.

Thedeformationmechanismsthatareoperativeduringcoldrollinghavebeenidenti edindetailbymeansofTEM.Fig.4showsthepresenceofmicrotwinsatarollingstraine=0.11.Dark eld(DF)imaginghasbeenusedtoclearlyidentifythetwovariantsobservedbyselectinganappropriatedi ractionspotforeachvariant.Fig.4fshowsmicrotwinsinacold-rolledsamplewithe=0.22.Thevery nemicrotwinsarestackedtogetherinarelativelythickbundleoflocalizedslip.NotethatsuchabundlecanberesolvedwiththeEBSDtechniqueused.

Itiswellknownthatmicrotwinscanbeconsideredaspeci ccon gurationofSF,e.g.,Refs.[32,33].Thetwin-ningdeformationisclearlylocalizedinbandsofnarrowlyspacedtwinlamellae.Microtwinsareknowntobestrong,impenetrablebarriersforfurtherslip[34],andthesmallspacingobservedbetweenthetwinlamellaedistinctlyreducesthemeanfreepathfordislocationslip,sothetwinsareresponsibleforthehighstrain-hardeningratesduringcoldrolling.Fig.5ashowsthatthematerialdeformsbyslip

aswell,asareaswithoutthepresenceofmicrotwinsareobserved.

Thisisexpectedingrainsthatarenotappropriatelyori-entedtoactivatetwinningsystemsandisinagreementwiththeEBSDanalysisgivenabove,whereseveraldeformedareaswerefoundfreefromtwins.

Microscopicshearbandshavebeenobservedinsamplescoldrolledtoastrainofe=0.11.ThisisillustratedintheTEMmicrographofFig.5b.Theoriginoftheseshearbandsisunclear.TheycanbeconsideredaconsequenceofoverlappingSFandmicrotwinning[9]orasaconse-quenceofplanarslipduetothelow-SFEofthematerial[33].Itispossiblethatthesemicroshearbandshaveanin uenceonthetextureevolution,aswillbediscussedlater.Althoughthedeformationenergyhasapparentlybeenaccommodatedindi erentwaysthroughoutthemicro-structure,thedeformedmicrostructureseemsenergeticallyrelativelyhomogeneous.ThisisillustratedintheKAMmapinFig.6.Thismapshowsthat,throughoutthewholedeformedmicrostructure,therearenoareaswithalargedi erenceinorientationbetweenneighbouringpoints,whichisindicativeofanenergeticallyhomogeneousmicrostructure.

3.2.Textureduringcoldrolling

TheevolutionofthetextureisshownbytheODFsec-tionsinFig.7.Thecold-rollingstrainincreasesfrome=0inFig.7atoe=0.51inFig.7f.Thehot-rolledtexture(Fig.7a)isveryweak,withamaximumintensityof2.0timesrandomforthecubecomponent{001}h100i.Thedeformationtexturesarealsorelativelyweak,withamax-imumintensityof5.0timesrandomforthesamplewitharollingstrainofe=0.51.

TheevolutionofthemaintexturecomponentswithincreasingrollingstrainisshowninFig.8.Withincreasingrollingstrain,thecubecomponentdecreasesanddisap-pearsforstrains>0.22.Theintensityofthecopper

内容需要下载文档才能查看

compo-

高Mn合金元素TWIP钢微观组织和织构演变

内容需要下载文档才能查看

1516L.Brackeetal./ActaMaterialia57(2009)1512–1524

Fig.3..Misorientationpro lescorrespondingtotheareasindicatedinFig.2.

内容需要下载文档才能查看

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

北师大版数学四年级下册第三单元第四节街心广场
冀教版小学英语五年级下册lesson2教学视频(2)
飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
七年级下册外研版英语M8U2reading
冀教版小学数学二年级下册1
苏科版数学 八年级下册 第八章第二节 可能性的大小
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
六年级英语下册上海牛津版教材讲解 U1单词
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
外研版英语三起5年级下册(14版)Module3 Unit2
苏教版二年级下册数学《认识东、南、西、北》
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
七年级英语下册 上海牛津版 Unit3
外研版英语七年级下册module3 unit1第二课时
人教版二年级下册数学
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
《空中课堂》二年级下册 数学第一单元第1课时
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
人教版历史八年级下册第一课《中华人民共和国成立》
二年级下册数学第三课 搭一搭⚖⚖
沪教版八年级下册数学练习册21.3(2)分式方程P15
苏科版八年级数学下册7.2《统计图的选用》
外研版英语七年级下册module3 unit2第一课时
小学英语单词
第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
北师大版数学 四年级下册 第三单元 第二节 小数点搬家