教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 工程科技> 冶金/矿山/地质> Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite

Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite

上传者:施服光
|
上传时间:2015-04-26
|
次下载

Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite

内容需要下载文档才能查看

SorptionandkineticsofCO2andCH4inbinderlessbeadsof13Xzeolite

JoséA.C.Silvaa, ,KristinSchumannc,AlírioE.Rodriguesb

a

EscolaSuperiordeTecnologiaeGestão,InstitutoPolitécnicodeBragança,Apartado134,5301-857Bragança,Portugal

LaboratoryofSeparationandReactionEngineering,DepartamentodeEngenhariaQuímica,FaculdadedeEngenharia,UniversidadedoPorto,RuadoDr.RobertoFriass/n,Portugalc

ChemiewerkBadKöstritzGmbH,Heinrichshall2,07586BadKöstritz,Germany

b

articleinfoabstract

ThesorptionequilibriumofCO2andCH4inbinderlessbeadsof13Xzeolitehasbeeninvestigatedbetween313and373Kandpressureupto4atm.TheamountadsorbedofCO2andCH4isaround5.2mmol/gadsand1.2mmol/gads,respectively,http://wendang.chazidian.comparingthesevalueswiththeonesinliteraturethevalueofCO2is20%higherthaninCECA13Xbinderpellets.ItisalsofoundthatisothermsarepronouncedTypeIforCO2andalmostlinearforCH4.TheCO2isothermsweremodeledusingasimpledeviationfromLangmuirisothermthattakesintoaccountinteractionbetweenadsorbedmoleculesatadjacentsites(Fowlermodel)suggestingamoderaterepulsion.Henry’sconstantsrangefrom143to11.1mmol/gads.atmforCO2and0.45to0.27mmol/gads.atmforCH4between313and373K,respectively.Theheatsofsorptionatzerocoverageare43.1kJ/molforCO2and9.2kJ/molforCH4.

ThesorptionkineticshasbeeninvestigatedbytheZero-LengthColumntechnique(ZLC).RecipestoanalyzeZLCdesorptioncurvesinpelletsofadsorbentsarereviewedanditisderivedacriteriawhichindi-catesthatforthesorptionratebemeasuredmacroscopicallythetimeoftheexperiment(thatshouldbe

r2

aboveafewseconds)isdirectlycalculatedwiththefollowingexpression:t0:1!7:02Â10À2ccBasedonsuchcriteriaitisshownthatcrystaldiffusivityofCO2in13XcanbemeasuredmacroscopicallybyZLC,beingthesamemeasurementforCH4practicallyimpossible.ThecrystaldiffusivityofCO2measuredexperimentallyis5.8Â10À15m2/sand1.3Â10À15m2/sat373and313K,respectively.Thesevaluesarecomparabletotheonesmeasuredbyafrequencyresponseandpulsechromatographytechniquesreportedinliterature.TheZLCdesorptioncurvesforCH4weremeasuredunderanequilibriumregime.

Ó2012ElsevierInc.Allrightsreserved.

Articlehistory:

Received17February2012

Receivedinrevisedform18March2012Accepted22March2012

Availableonline30March2012Keywords:

Binderless13XzeoliteSorptionofCO2/CH4ZLCtechnique

Adsorptionequilibrium

1.Introduction

Thereductionofcarbondioxideandmethaneemissionstoatmosphereisamatterofgreatconcernnowadayssincebothgasescancontributesigni cantlytotheso-calledgreenhouseeffectthatdescribesthetrappingofheatnearearth’ssurfacebygasesintheatmosphere.Indeed,carbondioxideisnecessarybecausetherearecalculationsshowingthatifitwerenotpresentintheatmo-sphereearthwillbe30°Ccooler.ThepresenceofCO2intheatmo-sphereisruledbythecarboncyclebuttodaythatbalancehasprobablybeenupset.AtthesametimeCO2/CH4separationsareofgreateconomicalandtechnologicalimportanceintreatinggasstreamslikeland llgas,biogasandcoal-bedmethane.Accord-ingly,thereisaneedtoinvestigateonthistopicandthatcanbedonewithimprovedef cienttechnologiestoseparateorremoveCO2andCH4fromexhaustgases.

Tworecentreviewsdiscussthismatterwithgreatdetailcon-cerningtheuseofadsorbentbasedtechniquestohandleCO2cap-tureandCO2/CH4separations[1,2].AnewclassofadsorbentsCorrespondingauthor.Tel.:+351273303125.

E-mailaddress:jsilva@ipb.pt(J.A.C.Silva).

内容需要下载文档才能查看

1387-1811/$-seefrontmatterÓ2012ElsevierInc.Allrightsreserved.http://wendang.chazidian.com/10.1016/j.micromeso.2012.03.042

namedMetal–OrganicFrameworks(MOFs)arefocusedbeingclearthatinfuturetheycanbeanexcellentalternativetozeoliteadsor-bentsgenerallyusednowadays.However,MOFsneedtobefurtherre nedregardingitsproductioninlargescale,chemicalandther-malstability,whicharepropertiesalreadywell-establishedinzeolites.

TherearetodayadsorptionprocessesbasedinzeoliteslikePres-sureSwingAdsorption–PSAtostoreandseparatecompoundssuchasCO2andCH4.Tobeusedasadsorbentszeolitepowderneedstotransformedintomolecularsievesandthisreducesitsworkingcapacityin20%ormorewhichistheamountofadsorptiveinertclaybindergenerallyusedtogivethenecessarymechanicalstrengthtothepelletsorbeadsinordertobeusedinpacked-col-umnsandatthesametimereducepressuredrop.Toincreasetheworkingcapacitythebindercanalsobeconvertedtozeolitematterleadingtotheso-calledbinderlesspelletsorbeads[3,4]butthistechnologyhasnotreceivedgreatattentionfromcompaniesthatproducemolecularsieves.Recently,thistechnologyhasbeenrecoveredandappliedforthesynthesisofbinderlessbeadsof13Xzeolitewherethenon-zeoliticcomponents(temporarybinder)isconvertedtozeoliteduringahydrothermalconversionafterthemanufacturingprocedure[5].Theresultingbinderlessbeadscan

220J.A.C.Silvaetal./MicroporousandMesoporousMaterials158(2012)219–228

Nomenclaturebcc0DcDpDmDKFHKLpqqm

isothermequilibriumconstant,PaÀ1

outletconcentrationoftheZLC,mol/m3

saturationconcentrationoftheZLC,mol/m3crystaldiffusivity,m2/smacroporediffusivity,m2/smoleculardiffusivity,m2/sKnudsendiffusivity,m2/spurge owratenZLC,m3/sHenry’slaw,mol/g.Pa

adsorptionequilibriumconstant(Henry’slawconstant),dimensionless

ZLCmodelparameter,dimensionlesspressure,PaÀ1

amountadsorbed,mol/kg

amountadsorbedatthesaturationoftheadsorbent,mol/kg

rcRpwRtTVsRp

crystalradius,mpelletradius,m

istheextraenergy(Fowlerisotherm),J/molidealgasconstant,J/mol.Ktime,s

temperature,K

volumeofadsorbent,m3pelletradius,m

Greeksymbolsqppelletdensity,kg/m3eppelletsporosity.DimensionlessCptortuosity,dimensionless

rootsoftranscendentalEq.(4),dimensionlessb1

hcoverageequaltoq/qm;thesameasdegreeof llingof

sites,dimensionless

increaseinthiswaytheworkingcapacitiesofexistingzeoliteadsorbenttechnologies.

Inliteraturewecan ndseveraldataandmodelingregardingthesorptionofCO2andCH4inzeolites[6–10]andMOFs[11–17].Amongthezeolitesoneofthemostinterestingiszeolite13Xduetoitslargecagesthatcanaccommodatealargeamountofmassandatthesametimethepresenceofcationsthatproduceelectric eldthatinteractswithstrongquadropolemomentmole-culessuchasCO2.Thisgivesrisetoanincreasedselectivitybe-tweenCH4(apolar)andCO2thathasbeenexploitedincyclicprocesses[18–21].

Forthemodelingofadsorptionprocessesitisoffundamentalimportancetoanalyzeconvenientlythermodynamicdata.ThebooksofBarrer[22],Ruthven[23],Guiochonetal.[24]andDo[25]highlightingreatdetailthebasicstoanalyzesuchdata.ForTypeIisothermswhicharethemostfrequentinzeolites,localizedadsorptionmodelssuchas:Langmuir,dual-site-Langmuir,Fowler,Nitta,etc.areusedextensivelyduetotheirsimplicityandatthesametimebeingthermodynamicconsistentgivinginsightintosorptioneventsinacomprehensiveway.

Themeasurementofsorptionkineticisalsofundamentalformodelingadsorptioncyclicprocessessincethetransportofmassintoandoutoftheadsorbentcanaffectsigni cantlytheperfor-manceofindustrialprocesses.Forthemeasurementofsorptionkineticsthereareseveraltechniques,oneismicroscopic(PFG,NMR)andtheotherismacroscopic(uptakerate,chromatographic)[26–28].SinceitsintroductionbyEicandRuthven[29]forthemeasurementofintracrystallinediffusivitiesinstronglyadsorbedspeciestheZero-LengthColumn(ZLC)techniquehasbeenusedextensivelyforthemeasurementofsorptionratesinporousmediaduetoitsapparentsimplicity[30–33].However,specialattentionintheuseofmodelparametersfromwhichkineticdataareob-tainedisrequiredsincetherearemodelswiththesamemathemat-icalformincompletelydifferentregimesthatwhenusedwithoutpreviouscalculationscanproduceerroneousresults[34].Exten-sionsforusingthetechniqueforliquidsystems[35,36],pelletsofadsorbents[37],analysesofin uenceofheateffects[38,39],effectofnon-linearequilibrium[40],effectofsurfacebarriers[41,42]andalsoforthemeasuringofadsorptionequilibriahavebeendevel-oped[43],beingnowpossibletousethetechniqueinabroadrangeofsystemssorbate-sorbent.

Thegoalofthisworkistoaccessdataofequilibriumandkinet-icsofsorptionofCO2andCH4onanewtypeofbinderlessbeadsof13Xzeolite.TheequilibriumdataaremeasuredinabreakthroughapparatusandthekineticdatabytheZLCtechnique.

Attentionismaderegardingthecomparisonoftheseresultswithpublisheddataonpelletsofthesamezeolitetypewithbin-der.Atthesametimethermodynamicandkineticparametersareobtainedthatareusefulforthedevelopmentofadsorptionsepara-tionprocessessuchastheonescalculatedfrommodelingofequi-libriumandkineticofsorption:heatsofsorption,Henry’sconstants,equilibriumconstants,workingcapacities,interandintracrystallinediffusivities.ThroughthisworksomeideasabouttheuseZLCtechniqueforthemeasurementthediffusivityinpor-ousadsorbentsarerevisedbyestablishingaproceduretoanalyseproperlysuchresultsintroducingasimplecriteriatoevaluatewhichkindofsystemscanbemeasuredmacroscopicallybyZLC.2.Experimentalsection2.1.Binderless13Xzeolite

Thepowderof13XfromwhichthebinderlessbeadswereformedisfromChemiewerkBasKostritzGmbH(Germany)withaSi/Alratioof1.18.Metakaolinisusedtomanufacturethebeads.Thesynthesisandcharacterizationprocedureisdescribedindetailelsewhere[5].Brie y,thebeadsformedconsistinsphericalparti-cleswithadiameterrangingfrom1.2to2.0mm.Thesizeofthezeolitecrystalsarearound2lm.Table1summarizesthecharac-teristicsofthebeads.

2.2.AdsorptionequilibriumandZLCapparatus

TheequilibriumandkineticsstudieswereperformedintheapparatusillustratedinFig.1.Brie y,itconsistsintwosections:i)agaspreparationsystem;andii)aGasChromatographwitha

Table1

Physicalpropertiesofzeolite13Xbeadsandadsorptioncolumncharacteristics.

Physicalpropertiesofbinderless13XbeadsaSiO2/Al2O3ratio

Crystaldimensions(lm)

Beadsdimension(spherical)(mm)Averageporediameter(lm)AdsorptioncolumncharacteristicsLength(cm)

Internaldiameter(mm)

a

2.35%2

1.2–2.00.684.6

FromRef.[5].

J.A.C.Silvaetal./MicroporousandMesoporousMaterials158(2012)219–228221

TCDdetectorwheretheadsorptioncolumnisplaced.Inthegaspreparationsectionitisusedheliumastheinertgaswhichispre-viouslydehydratedinamolecularsievetype5A.Heliumentersinthesystembytwodifferentstreams:onelinetobemixedwithsor-batespecies(CO2andCH4)andtheotherwhereitispure(line1).TheHefromline(1)andthemixture(sorbate+inert)fromline(2)runtoa6-waycrossovervalve(SV)thatallowstheselectionofwhichline1or2passesbytheadsorptioncolumn.Thelinethatdoesnotenterintheadsorptioncolumnisby-passedthroughline3.Thepressureofallthesystemiscontrolledbyaback-pressure-regulator(BPR).Theef uentoftheadsorptioncolumnpassesdi-rectlybythereferencesideofaTCDthatcandetectconcentrationofallgasestoaround100ppm(ifneededapartofthisef uentcouldby-passtheTCD).

Theadsorptioncolumnconsistsofa4.6mmi.d.stainlesssteelcolumnwith80mmlength.Fortheadsorptionequilibriumstudiesthecolumnisentirely lledwithzeolitebeads.InZLCexperimentsjustthebottomofthecolumnis lledwithfewadsorbentparticles,beingtheremainingspaceoccupiedwithsmallglassspheres.Valveposition,oventemperature,mass ows,back-pressureregu-latorandTCDsignalarecompletelyautomated.

Thesorbateandinertgaseswerefurnishedbyairliquidwiththefollowingpurities:methaneN35(99.95%),carbondioxideN48(99.998%),andheliumALPHAGAZ2(99.9998%)2.3.Procedureforsorptionequilibriumexperiments

Beforetimezeroofanexperimenttheswitchvalve(SV)directspureheliumthat owsthroughline1totheadsorptioncolumn,andventthroughline3themixturethatcomesfromline2pre-paredbyacombinationofmass owsofsorbateplushelium.Attimezeroswitchvalve(SV)isswitchedallowingline2toenterinthecolumnventingatthesametimeline1.Theexperimentcon-sistsinmeasuringcontinuouslytheconcentrationasafunctionoftimeattheoutletofthebedbytheTCD.Theequilibriumloadingoftheexperimentisobtainedbyintegratingtheconcentrationpro- lesofthebreakthroughcurvewithaproceduredescribedelse-where[44].Beforethe rstruntheadsorptioncolumnisactivatedforatleast24hat493Kunderpurehelium ow.Whentheadsorptionexperiment nishesSVisswitchedagain.OncetheTCDsignalreachesitslowerlevelanotherrunisperformed.Onerunmeansoneequilibriumpointoftheisotherm.

2.4.ProcedureforZLCexperiments

FortheZLCexperimentswefollowstrictlytheguidelinespro-videdbyEicandRuthvenintheoriginalZLCpaper[29].Especially:1)Set-upalowconcentrationofsorbatetovalidateHenry’slawofisotherm;2)Blankrunstoaccountforextraneouscapacities(no-problemswerefoundsinceinoursystemthecolumnisdirectlyat-tachedtothedetector);3)Performexperimentswithdifferentpurge owratestoseetheproportionalitybetweenparameterLandthe owrate.4)set-upadifferentialbed(50mgofpelletswereusedintheexperiments).

TheZLCexperimentissimilartotheoneperformedfortheadsorptionequilibriummeasurements.BeforetimezeroSVdirectsthe owofline2(whichcontainsaverylowconcentrationofthesorbatespeciesaround0.01atm)tothecolumn.AttimezeroSVisswitchedandline1(purehelium)isallowedtopassthroughtheadsorptioncolumninitiatingthedesorptioncurve.Thesignalpro-ducedbytheTCDiscontinuouslymonitoredbyacomputerforfu-turedatatreatmentinordertoset-upofthedesorptioncurveintermsofconcentrationversustime.

3.Theoretical

3.1.Purecomponentsisotherms

AsimpleandsuitablemodeltorepresenttypeIisothermsistheLangmuirequation:

1h

¼b

pð1ÀhÞ

ð1Þ

whereh=q/qmisthedegreeof llingofsites,bisanequilibriumconstant,pthepressure,qtheamountadsorbedandqmistheamountadsorbedatthesaturationoftheadsorbent.TheLangmuirequationisperfecttorepresentsorptioninahomogeneoussitessurfacewhereasorbatemoleculeoccupiesoneactivesitewhenitadsorbswithnointeractionbetweenadsorbedmolecules.

ToaccountforlateralinteractionsbetweenadsorbedmoleculesFowler[45]proposedthefollowingequation

1h

¼bexpðÀ2wh=RTÞ

pð1ÀhÞ

ð2Þ

内容需要下载文档才能查看

222J.A.C.Silvaetal./MicroporousandMesoporousMaterials158(2012)219–228

wherewistheextraenergywhensorbatemoleculesoccupyadja-centsites(positiveforrepulsion,negativeforattraction),RtheidealgasconstantandTthetemperature.

Thevalidityofbothmodelscanbeeasilyveri edbyplotting

log1h

againsth.Ifwe ndahorizontallinetheLangmuirmodelisvalid.InthecaseofFowlerisothermequationwewill ndastraightlinewithslopeÀ2w/RT.Tobettertestbothmodelsitisconvenienttoknowaprioritheparameterqmaxbutitcanbere-laxedduringveri cationifnodataareknown.3.2.ZLCmodels

TheZero-LengthColumn(ZLC)technique[29]formeasuringdiffusivitesinadsorbentsconsistsinadifferentialbedofporousparticlesthatis rstsaturatedwiththesorbatespeciespreferablyataverylowconcentrationunderthevalidityoftheHenry’slawoftheisotherm.Attimezerothecarriergas(freeofsorbate) owsthroughtheZLCandthedesorptioncurveismeasuredasafunc-tionoftime.

AsexplainedbyEicandRuthvenmodelparameterscanbeeas-ilyobtainedusingtheinformationofdesorptioncurvesatlong

times.ThemodeloftheZLCbasedontheFick

´slawofdiffusionre-ducesatlongtimestothefollowinglinearequationinasemi-logplot,

ln c

¼ln2L!0bÀb2Dc

12t1þLðLÀ1Þ

ð3Þ

cwhere,

b1cotðb1ÞþLÀ1¼0ð4Þ¼

1Fr2Lc

3KVð5Þ

sDc

InthepreviousequationscistheoutletconcentrationoftheZLC,c0isthesaturationconcentration,tisthetime,b1aretherootsoftranscendentalEq.(4),Dcisthecrystaldiffusivity,rcthecrystalradius,Lamodelparameter,Fthepurge owrate,VsthevolumeofadsorbentandKadimensionlessadsorptionequilibriumconstant(Henry’slawconstant).Thepreviousmodelisvalidforthemea-surementofintracrystallinediffusivity.Ifexperimentsaremadeinpelletsandifthecontrollingmechanismofdiffusionistheoneinthemacroporesofthepelletsthepreviousequationsareslightlymodi edbeing,

ln c

2L!c¼lnðLÀ1ÞÀb2Dp

0b21R2

tð6Þ

1þLpð1þKÞL¼

1FR2p

3Vð7Þ

sDp

whereDpisthemacroporediffusivityandRpisthepelletradius.ConsideringthatdiffusioninmacroporesisKnudsendiffusivityinserieswithmoleculardiffusion,theporediffusivitycanbeesti-matedby,

Dp¼

C

1p11ð8Þ

m

þ

K

whereCpisthetortuosity,DmisthemoleculardiffusivityandDKistheKnudsendiffusivity.

IfexperimentsinZLCareperformedunderanequilibriumre-gimeL<0.1thepreviousequationscanbesubstitutedwiththefol-lowingequation[43],

ln c c¼ÀF

kVt:ð9Þ

0s

RecipesforusingZLCtechniquecarefullyaregivencomprehen-sivelyandwithgreatdetailintheoriginalpaperbyEicandRuth-ven[29].

4.Resultsanddiscussion4.1.Sorptionisotherms

Theexperimentalsinglecomponentsorptionisothermsmea-suredforCO2andCH4in13XareshowninFig.2aandb,respec-tively.Datawerecollectedatthreetemperatures:313,343and373Kandforpartialpressures(heliumasinert)upto4atm.WecanobserveinFig.2thatCH4isothermsarepracticallylinearandmarkedtypeIforCO2intherangeoftemperatureandpressurestudied.Asexpected[6,9,10],Fig.1showsthatCO2isthemorestrongadsorbedcomponentwithanamountadsorbedthatreachesmorethan5mmol/gadsat313Kandpartialpressurearound4atm.ForthesamepressureandtemperaturetheamountadsorbedofCH4ismuchsmallerbeingalmost1.2mmol/gads.ThismeansalsoaselectivityCO2/CH4around4.2.Sinceweusebinderlessbeadsitisexpectedthatthesorptioncapacityincreases,beingofinteresttocompareourdatawith13Xzeolitewithbinder.LookingatdatameasuredbyMulgundmathetal.[9]inCECA13Xzeoliteofmeshsize20–60ourdatacomparesto4.0mmol/gadsforCO2and1.27mmol/gadsforCH4.RegardingthedataonCECA13Xextru-datesof1.6mm[10]thedataofthepresentworkcomparesto

内容需要下载文档才能查看

J.A.C.Silvaetal./MicroporousandMesoporousMaterials158(2012)219–228223

4.05mmol/gforCO2at308Kand1.32mmol/gforCH4at308K.Thismeansthatthebinderless13Xstudiedinthisworkincreasesthesorptioncapacityin20%forCO2beingthevaluesforCH4prac-ticallythesame.

TocalculatedirectlyHenry’sconstantsfromexperimentaldataweplotp/qversuspaccordingtoaVirialPlot.ExtrapolationofdatatozerocoveragegivesusthereciprocalofHenry’sconstants.Fig.3showssuchplotsinsemi-logcoordinatesforbothCO2andCH4andTable2thecalculatedvalues.ForCO2theHenry’sconstantsrange

Table2

IsothermmodelparametersforsorptionofCO2andCH4inbinderlessbeadsof13Xzeolite.

IsothermmodelsCO2

CH4

Fowler

Langmuirqm(mmol/gads)7.4a

7.4a

ÀDH(kJ/mol)43.19.2w(kJ/mol)6.1–

313KHb(mmol/gads.atm)1430.45b

(atmÀ1)

21.30.0643343KHb(mmol/gads.atm)38.50.34b

(atmÀ1)

4.760.0462373KHb(mmol/gads.atm)11.10.27b

(atmÀ1)

1.49

0.0374

aFromRef.[2,10].

b

Henry’sconstantcalculatedfromVirialplots.

内容需要下载文档才能查看

from143to11.1mmol/gads.atmbetween313and373K,respec-tively.TheseveryhighvaluesareclearlyduetothestrongbondsbetweenCO2andthecationsofzeoliteinspiteofthelargequadro-polemomentofCO2.ForCH4thevaluesaremuchsmallerandrangebetween0.45to0.27mmol/gads.atminthesametempera-tureintervallevel.Asaresult,wefoundthattheselectivityCO2/CH4atlowpartialpressuremeasuredbytheratiooftheHenry’sconstantsat313Kis143/0.45equalto318.Thisisaveryhighvalue.

TomodelsorptiondatawedecidedtouselocalizedadsorptionmodelswheretheLangmuirmodelisthesimplerone.Fig.4shows

内容需要下载文档才能查看

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
六年级英语下册上海牛津版教材讲解 U1单词
《空中课堂》二年级下册 数学第一单元第1课时
七年级下册外研版英语M8U2reading
人教版历史八年级下册第一课《中华人民共和国成立》
第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
沪教版八年级下册数学练习册21.4(1)无理方程P18
沪教版八年级下册数学练习册21.3(2)分式方程P15
苏教版二年级下册数学《认识东、南、西、北》
沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
沪教版八年级下次数学练习册21.4(2)无理方程P19
冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
外研版英语七年级下册module1unit3名词性物主代词讲解
外研版八年级英语下学期 Module3
人教版二年级下册数学
沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
3月2日小学二年级数学下册(数一数)
苏科版数学八年级下册9.2《中心对称和中心对称图形》
北师大版数学四年级下册第三单元第四节街心广场
第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
北师大版数学 四年级下册 第三单元 第二节 小数点搬家
沪教版牛津小学英语(深圳用) 四年级下册 Unit 8