Blind extraction of chaotic sources from mixtures
上传者:马严|上传时间:2015-05-05|密次下载
Blind extraction of chaotic sources from mixtures
DigitalSignalProcessing???(????)???–
内容需要下载文档才能查看???
ContentslistsavailableatScienceDirect
DigitalSignalProcessing
内容需要下载文档才能查看http://wendang.chazidian.com/locate/dsp
Blindextractionofchaoticsourcesfrommixtureswithstochasticsignalsbasedonrecurrencequanti?cationanalysis
DiogoC.Sorianoa,c,?,RicardoSuyamab,RomisAttuxa,c
DepartmentofComputerEngineeringandIndustrialAutomation(DCA),SchoolofElectricalandComputerEngineering(FEEC),UniversityofCampinas(UNICAMP),C.P.6101,ZIPCODE13083-970,Campinas,SP,Brazilb
CentrodeEngenharia,ModelagemeCiênciasSociaisAplicadas,UniversidadeFederaldoABC(UFABC),SantoAndré,SP,Brazilc
LaboratoryofSignalProcessingforCommunications,SchoolofElectricalandComputerEngineering(FEEC),UniversityofCampinas(UNICAMP),C.P.6101,ZIPCODE13083-970,Campinas,SP,Brazil
a
article
Articlehistory:
Availableonlinexxxx
infoabstract
Thisworkaimstopresentanewmethodtoperformblindextractionofchaoticdeterministicsourcesmixedwithstochasticsignals.Thistechniqueemploystherecurrencequanti?cationanalysis(RQA),atoolcommonlyusedtostudydynamicalsystems,toobtaintheseparatingsystemthatrecoversthedeterministicsource.ThemethodisappliedtoinvertibleandunderdeterminedmixturemodelsconsideringdifferentstochasticsourcesanddifferentRQAmeasures.Abriefdiscussionaboutthein?uenceofrecurrenceplotparametersontherobustnessoftheproposalisalsoprovidedandillustratedbyasetofrepresentativesimulations.
©2011ElsevierInc.Allrightsreserved.
Keywords:
ChaoticsignalsBlindextraction
Blindsourceseparation
Recurrencequanti?cationanalysis
1.Introduction
Dynamicalsystemscanbedescribedintermsofastatemap-pingcommonlyde?nedbyasetofdifferentialequations.Whenthismappingiscomposedofnonlinearfunctions,averyrichdy-namicalscenariocanoccur,whichincludesconvergenceto?xedpoints,existenceoflimit-cycles,quasi-periodicityandchaos.In-deed,chaoticoscillationsarepresentinmanyphysicalsystems(e.g.biological,mechanicalandelectronic),whichisjusti?edbytherelevancetothestudyofnaturalphenomenaofnonlinearpro-cesseslikecooperation,competition,saturationandhysteresis,justtociteafew.Chaoticbehaviorisassociatedwithfeaturesasape-riodicity,broadbandspectrumandsensitivitytoinitialconditions,aspectsthatcanbeeasilyconfusedwithcharacteristicsofrandomprocesses[1,2].
Infact,distinguishingchaoticfromrandomsignalsisafarfromtrivialtask,especiallywhenexperimentaltimeseriesimmersedinnoiseareconsidered[2–5].Themostcommonapproachistoeval-uatetheKolmogorov–Sinai(KS)entropybycalculatingitslowerboundgivenbythecorrelationentropy(K2)[6].Ingeneral,thisquantityiszeroforperiodicsignals,?niteandpositiveforchaoticprocessesandtendstoin?niteforrandomsignals[2,7],althoughsomestochasticprocessescharacterizedbyapowerlawspectrumcanbecitedasexceptions,providinga?niteandpositivevaluefortheK2entropy[2].Moreover,invariantmeasuresthatchar-
Correspondingauthorat:DepartmentofComputerEngineeringandIndustrialAutomation(DCA),SchoolofElectricalandComputerEngineering(FEEC),UniversityofCampinas(UNICAMP),C.P.6101,ZIPCODE13083-970,Campinas,SP,Brazil.
E-mailaddress:soriano@dca.fee.unicamp.br(D.C.Soriano).1051-2004/$–seefrontmatterdoi:10.1016/j.dsp.2010.12.003
*
acterizechaoticdynamicalsystems(astheK2entropy,Lyapunovexponents,correlationdimensions,amongothers)arestronglyaf-fectedbynoiseinpractice,whichmakestheircalculationfromexperimentaltimeseriesunstableorunreliable[1].Inthiscase,itiscertainlyofgreatusetoemployapreprocessingstageinordertoenhance,forinstance,thedeterministicfeaturesofthesignal.Unfortunately,the?lteringprocessbasedontheclassicalFourierapproachcancausethelossofrelevantinformation[1,8–10],sincebothsignals(chaoticandrandom)haveabroadbandspectrum.Inthiscontext,thechallengingproblemofdenoisingchaotictimese-rieshasbeenaddressedinseveralworks[11–15].Generally,thesemethodsconstrainthereconstructedstatevectortofallontogeo-metricalobjectsthatarelocallylinear(orhigher-orderpolynomialmaps)[1,10],assumingthatthedeterministiccomponentliesonasmoothsubmanifold(see[9,10]forinterestingreviews),whichmakespossibletoachievethetrajectorygeneratedbythedynam-ics,reducingnoisebyaniterativeprocess.
Fromatheoreticalstandpoint,ifmoreinformationisavailable(which,inthiswork,meansthatmorethanonemixtureofthechaoticandnoisesourcescanbeavailable),denoisingchaotictimeseriescanbetreatedwithintheframeworkoftheblindsourceex-traction(BSE)problem,asitisconcernedwithrecoveringaspeci?csetofsignalsofinterest–usuallythedeterministicsignals–fromversionsinwhichtheyaremixedwithstochasticsources.Anatu-ralpossibilitytosolvethisproblemwouldbetoemployaclassicalblindseparationapproachsuchasthewell-establishedindepen-dentcomponentanalysis(ICA)[16,17],althoughitwouldnotbecapableofexploringthepeculiarfeaturesoftheproblem,partic-ularlythefactthatsomesignalsaregeneratedbyadeterministicdynamicalsystem.Asamatteroffact,thisisaninstanceinwhich
©
2011ElsevierInc.Allrightsreserved.
2
D.C.Sorianoetal./DigitalSignalProcessing???(????)???–
内容需要下载文档才能查看???
Fig.1.Panels(a),(b),(c),(d),show,respectively,therecurrenceplots(N=1000samples,de=3,τ=3,ε=0.5)fromaperiodicoscillation(sin(10t)),achaoticLorenztimeseries,agaussianrandomsource(zeromeanandunitaryvariance)andamixtureofrandomandchaoticsources.
aprioriinformationaboutthesourcesisavailable,whichisalwayssomethingthatwidenstheapplicabilityofblindsignalprocess-ing(researchareassuchassparsecomponentanalysisattestthisfact[18]).
Inthiswork,amethodforsolvingtheBSEproblemwhenchaoticandstochasticprocessesaremixedispresented.Thetech-niqueexploresthedynamicfeaturesunderlyingthegenerationofthechaoticsourcestorecoverasignalthatis“asdeterministicaspossible”.Thesolutionemploysarecurrenceplot,aclassicaltoolfornonlinearanalysisofdynamicalsystems[19,20],tobuildscorefunctionsbasedonclassicalestimatorsgivenbyrecurrencequan-ti?cationanalysis(RQA)[21].Thesescorefunctionsareusedtoadaptlinearseparatingsystemsunderdifferentsignalandmixturemodels(invertibleandunderdetermined),andacomparisonwithaclassicalICAmethodologyisestablished.
Thisworkisorganizedasitfollows:inSection2,abriefintro-ductiontochaoticsignalsandRQAisgiven.Section3presentstheBSEproblemanditsrelationtotheproposedapproachtoextractdeterministicsources.Section4isdedicatedtoshowingtheresultsobtainedforaperfectinvertiblescenario(inwhichafullrankmix-ingmatrixisconsidered),toanalyzingtheroleofrecurrenceplotparametersintheextractionprocedure,and?nally,topresentingtheperformanceofthemethodintheunderdeterminedcase(inwhichtherearemoresourcesthanmixtures).Section5presentsadiscussionaboutthecontributionsandperspectivesofapplica-tionoftheproposedmethodinviewofwhathasalreadybeenexposedintheliterature.TheideaofextractionofchaoticsourcesusingRQAwasintroducedbythepresentauthorsinapreviouswork([22])andtestedforalimitedsetofsimulations.ThepresentworkextendstheproposalbytakinginaccountdifferentstochasticsourcesandmixingmodelsconsideringthreeclassicalRQAmea-
sures,andalsobyanalyzingtheroleofrecurrenceplotparametersontheextractionprocedure.
2.Chaoticsignalsandgenerationofrecurrenceplots
Informalterms,achaoticsignalisde?nedasacontinuous-valuedsignalwith?niteandpositiveentropyrateandin?niteredundancyrate[7].Forourpurposes,achaoticsignalshouldbesimplyunderstoodasonegeneratedbyachaoticsystem,whichmeansthatitspropertiesarede?nedbythedynamicsthatgener-atesitandthebehaviorofitstrajectoriesinthephasespace.Inordertoreconstructtheunderlyingattractor(thesolutionofthedynamicalequationsinthephasespace)fromasingleobservedsignal(thatis,fromasinglestatevariable)onecanapplytheTak-ens’embeddingtheorem[1],de?ningastatevectorx(k)suchthat:
x(k)=x(k)
??
x(k?τ)...
xk?(de?1)τ
??????
(1)
wherederepresentstheembeddingdimension–de?nedasthenumberofcoordinatesthatunfoldstheattractor–andτrepre-sentsthedelaybetweensamples.Eventhoughthistrajectorymaynotbeexactlythesameasthatgeneratedbythesystem,itwillbetopologicallyequivalentthereto[1].
Afterthereconstruction,itispossibletocharacterizetheat-tractorwiththeaidofitsrevisitedstates,whichcanbedonewitharecurrenceplot,ausefulgraphicaltoolfornonlinearanalysisofdynamicalsystems?rstproposedin[http://wendang.chazidian.comingthereconstructedstatex(k),therecurrencemapwillberepresentedbyanN×Nmatrix,wheretheelement(i,j)willbeablackdotwheneverx(i)issu?cientlyclosetox(j),i.e.,whenever??x(i)?x(j)??<ε.
Thecharacterizationandapplicabilityofrecurrenceplotsbe-comesclearbycomparingmapsobtainedfromsignalsofdifferent
D.C.Sorianoetal./DigitalSignalProcessing???(????)???–???
3
natures.InFig.1,mapsgeneratedfromaperiodicsignal(Fig.1(a)),achaoticsignal(Fig.1(b)),arandomsignal(Fig.1(c))andamix-tureofchaoticandrandomsignals(Fig.1(d))arepresented.Thepatternsclearlydifferintheirstructureandtheirregularity.Infact,theseaspectsproviderelevantinformationaboutthedynam-icalbehavior.Forinstance,segmentsparalleltothemaindiagonalconsistinpointscloseintime,capturingacorrelationcharacteris-ticthatisinherenttoadeterministicprocessandisnotnecessarilyvalidforstochasticprocesses.Verticalorhorizontallinesrevealstatesthatdonotchangeintime[20],whilefadingtothecor-nerscanbeusedtoidentifynonstationarysignals.
Acrucialpointisthatchaotictimeseriestendtogenerateshorterdiagonalsthanthoseassociatedwithperiodicsignals,butlongerthanthoseassociatedwitharandomprocess,ascanbeob-servedinFig.1.Thissuggeststhatstatisticsbasedinthestructureofdiagonalsinarecurrenceplotcanbeusedtode?necontrastfunctionstoseparatedeterministicfromrandomsignals.Thesecontrastscanbebuiltfromclassicalrecurrencemeasures[21,4,20]likethepercentageofdeterminism(?td),theentropyofdiagonals(?te)andthelongestdiagonal(?tl)foundinthemap.Formally,ifP(ε,l)isde?nedasthefrequencydistributionoflinelengthslforamapwithresolutionε,thescorefunctionassociatedwiththedeterministiccontentinawindowofdiagonallengthsatobcanbemathematicallydescribedas:
Fig.2.Schemeforblindextractionproblem,sc(n)isthechaoticsource,ss(n)isthestochasticsource,x1(n)andx1(n)aretheobservedmixtures,Aisthemixingmatrix,wistheseparatingvectorandy1(n)therecoveredchaoticsignaluptoscalingfactorG.
ICAapproacheslookforsolutionsinθthatensure,forinstance,maximalnongaussianity,whichcanbeevaluatedwiththeaidofthekurtosisoftheoutputcomponents,or,alternatively,max-imizationofindependencebetweentheelementsoftheoutputvectory(n)=[y1(n)y2(n)]T=Wx(n)(e.g.byminimizingamu-tualinformationmeasure),beingWtheseparatingmatrixgiven
??cosθsinθ??by.Wehaveconsideredheretheclassicalkurtosis
?sinθcosθ
(?tk)andmutualinformation(?tm)scorefunctions,asde?nedin[16,17]:
????2
?3Ey1(n)2
????????
?tm=Hy1(n)?Hy1(n)|y2(n)
?tk=Ey1(n)
????4
(5)(6)
?td=
l=b??l=a
l=N????lP(l)lP(l)
l=1
(2)
Thescorefunctionrelatedtothelongestdiagonalline(exclud-ingthemaindiagonal)foundinthemapcanbede?nedas:
l
?tl=max{li}i=1
??
N
??
(3)
whereNlisthetotalnumberofdiagonallines(excludingthemainone).Finally,toourpurpose,thescorefunctionassociatedwiththeShannonentropyassociatedwiththeprobabilityp(l)=P(l)/Nlof?ndingadiagonaloflengthlisde?nedby:
?te=?
Nl??l=lmin
p(l)lnp(l)
????
(4)
andisrelatedtoameasureofcomplexityoftherecurrenceplot(e.g.uncorrelatednoisehasasmall?te,re?ectinglowcomplexity).Thethresholdlminexcludesthediagonallineswhichareformedbytangentialmotionofphasespacetrajectories[20].
3.Theblindsourceextractionproblem(BSE)inthecontextofdeterministicsignals
Letusconsiderthattwosources–onebeingachaoticsignalsc(n)andtheotherbeingastochasticsignalss(n)–arelinearlymixed,givingrisetox(n)=As(n),wherex(n)=[x1(n)x2(n)]Tisthemixturevector,Aisthe2×2mixingmatrix(whichisas-sumedtohavefullrank)ands(n)=[s1(n)s2(n)]Tisthesourcevector.Theaimofblindsourceextraction(BSE)istoextractasourcefromthemixtureswithouttheneedforareferencesig-nalorknowledgeofcoe?cientsofthemixingmatrix.Thistaskcanbeachievedbymultiplyingthemixturevectorbyanade-quatelychosenseparatingvectorw,sothattheoutputvectoryield,forinstance,y(n)=wTx(n)=Gsc(n),whereGisascalingfactor.Fig.2showsaschemethatrepresentsthedescribedblindextrac-tionproblem.
Letusalsoassume,withoutlossofgenerality,thatthemix-ingmatrixisorthogonal(thiscanbeachievedviaawhiteningprocedure),and,asaconsequence,wcanbeparameterizedintermsofasinglevariableθ,i.e.,w=[cosθsinθ]T.
内容需要下载文档才能查看Classical
wheretheoperatorE{α}isthestatisticalexpectationoftheran-domvariableαandH{α}istheShannondifferentialentropy[23]ofα.Inparticular,toevaluate(6)wehaveusedthemutualin-formationestimatorprovidedby[24],sinceitise?cientandfast.Finally,itisalsoimportanttoremarkthatICAallowstherecoveryoftheoriginalsourcesuptoscaleandpermutationambiguities[16,17].
However,whenitisknownthatoneofthesourcesis,forexam-ple,adeterministicchaoticsignal,itispossibletoobtainthesepa-ratingvectorbasedonthemaximizationofthedeterministicchar-acteroftheoutputvector,inconsonancewithwhatwaspresentedinSection2,withtheaidofthescorefunctionsprovidedbyRQA.Animmediateconsequenceisthatthepermutationambiguityshouldnotexist,atleastinitsoriginalform,sincethemeasurewillestablishadifferencebetweendeterministicandstochasticsources.
Inverysimpleterms,wewillusethefactthat“longandor-ganizeddiagonals”tendtocharacterizedeterministicbehaviortobuildcostfunctionscapableofdiscriminatingbetweensignalsofdifferentnatures.Therationaleisthatstructured“longdiagonals”,inacertainsense,areindicativeoftemporalandspatialcorrela-tioncausedbythedeterministicgenerativelawunderlyingsc(n),whereasthesamedoesnothold,byde?nition,forarandomsignal.Thereaderinterestedinamoreformalpresentationofrecurrenceplotsandoftheirrelationshipwithinformation-theoreticmeasuresisreferredto[20].
Intheexposedmethodology,weaimto?ndthevalueofθthatprovidestheseparatingvectorwthatmaximizesthescorefunc-tionsshowninEqs.(2),(3)and(4),basedontherecurrenceplotofy(n),whichshouldyieldthe“mostdeterministic”output.4.Results
4.1.BlindextractionofchaoticsourcesinainvertiblemixturescenarioInordertoanalyzethevalidityoftheproposedmethodology,weshallturnourattentiontodistinctrepresentativesimulationscenarios.Inallcases,wewillconsidersc(n)tobethe?rststatevariableoftheemblematicLorenzsystem[1](preprocessedtohavezeromeanandunitvariance)anddifferentstochasticss(n)sources(whitegaussian,whiteuniformandcoloredgaussianpro-cesseswithzeromean).Thesechoicesweremadeafterasequenceofinitialtests,althoughtheyarebynomeansmandatory:testswithotherchaoticsystems(e.g.theRösslerdynamicalsystemandthelogisticmap)ledtosimilarresults.
4
D.C.Sorianoetal./DigitalSignalProcessing???(????)???–
内容需要下载文档才能查看???
Fig.3.Upperpanel–deterministiccontent(?td)ofy1(n),longestdiagonal(?tl)ofy1(n)andentropyofdiagonallines(?te)ofthemapfordifferentθvalues(N=1000,de=3,τ=3,ε=0.1,a=40,b=60,lmin=2).Thestochasticsourceisawhitegaussiansignal10dBbelowthechaoticsourceinpower.Lowerpanel–kurtosisofy1(n)–(?tk)–andmutualinformation
内容需要下载文档才能查看Fig.4.ThesamesimulationperformedinFig.3isrepeatedincreasingthenoisepower(ss(n))toaSNRof2dBbelowthechaoticsource.
Inthe?rstscenario,awhitegaussianprocess(10dBbe-lowthechaoticsourceinpower)andafullrankmixingmatrix??sinθ?cosθ??
,withθ=π/6areconsidered.Inordertorecoverthe
cosθsinθ
chaoticsource,theextractingvectorwshouldbechosensuchthaty1(n)=wTx(n)beasdeterministicaspossible,whichmeansthatθshouldmaximize(2),(3)and(4).InFig.3,wepresentthevaluesoftheproposedscorefunctionsandalsooftwocommonlyusedICAcontrasts:thekurtosisofy1(n)andthemutualinformationbetweeny1(n)andy2(n),asrespectivelyde?nedin(5)and(6).Inthecasestudiedhere,thesolutioninθthatmaximizes(2),(3),(4)and(5)andminimizes(6)canbefoundbyperforminganexhaus-tivesearchinthisparameter(whichimpliesinvaryingθfrom0toπ)forevaluatingtherespectivescorefunctions.Forsituationswherealargenumberofsourcesareconsidered,thenumberofparametersintheseparatingsystemincreases,and,inthiscase,itwouldbebettertoemploymoresophisticatedoptimizationtech-niqueswithlowercomputationalcost.Forreadersinterestedinthisscenariowestronglyrecommend[17]foradiscussionofthesemethods.
Itisalsoimportanttonoticethat,inordertoanalyzeheretheperformanceofthemutualinformationcontrast,itwasnecessarytoleavetheextractionframeworkanddealwithablindsourceseparation(BSS)problem,sinceitrequirestherecoveryofbothsourcesy1(n)andy2(n).
The?rstimportantconclusionisthattheestimatorsbasedontherecurrencestatisticshaveglobaloptimaatthesolutionsthatleadtoperfectinversion(uptoasignambiguity),afeaturesharedbymethodsbasedonkurtosisandmutualinformation.Thesere-sultsrevealthattheproposalful?lledtheessential“soundnessre-quirements”ofaseparationmethodandhadaperformanceequiv-alenttothatobtainedviaclassicalICAmethods.Itisinterestingtoobservethatthescorefunctions(2),(3)and(4)haveabetterper-formancewhenthenoisepowerisincreased(theSNRisreducedfrom10to2dB),whichisnotnecessarilyvalidforclassicalICAmeasures[25].ThissituationisillustratedinFig.4,fromwhichitcanbeinferred,interalia,thattheminimumvalueofthemu-tualinformationestimatedoesnotseemtobeareliablecriterion,sincethereisnotawell-de?nedminimumobtainedbythisscorefunction.
Toillustratethepotentialoftheproposedmethod,Fig.5showsthetimeseriesobtainedwhenthesolutionthatinvertsthemixingprocessisadoptedinthesimulationscenarioofFig.4.TheupperpanelofFig.5showstheoriginalchaoticsource,themiddlepanelshowsoneoftheobservedmixtureswithaSNRof2dBandthelowerpanelsshowstherecoveredchaoticsource.Itispossibletoobservethatafteradaptingtheseparatingsystemwiththesolutionthatmaximizes(2),(3)and(4)therecoveredchaoticsourceisverysimilartotheoriginalone,whichisaconsequenceoftheperfectinversionofthemixingprocess.
Whenthesamesimulationisperformedconsideringthestochasticsourcetobeawhiteuniformly-distributedsignal,itispossibletoverifythattheproposedrecurrence-basedscorefunc-
内容需要下载文档才能查看
5
Fig.5.Theupper
内容需要下载文档才能查看thelowerpanelshowstherecoveredFig.6.Upperpanel–deterministiccontent(?td)ofy1(n),longestdiagonal(?tl)ofy1(n)andentropyofdiagonallines(?te)ofthemapfordifferentθvalues(N=1000,de=3,τ=3,ε=0.1,a=40,b=60,lmin=3).Thestochasticsourceisawhiteuniformsignal2dBbelowthechaoticsourceinpower.Lowerpanel–kurtosisofy1(n)–(?tk)–andmutualinformationbetweeny1(n)andy2(n)–(?tm)–fordifferentθvalues.
tionsarestillcapableofleadingtoinversionofthemixingmatrix(upperpanelinFig.6).Nevertheless,itcanbenotedfromthelowerpanelinFig.6thatthemixtureofachaoticsourcewithauniformnoiseposesamoredi?culttaskforanICAapproach.Inthiscase,maximizingthenongaussianityofy1(n)doesnotleadtorecoveryofthechaoticsource(asitisalsoobservedforthemin-imizationofmutualinformation).Indeed,[25]haspointedthatsub-gaussiannoiseasthatemployedinthiscasecanbeseparatedviaICA(usingFastICAalgorithm)iftheSNRishigherthan5dB,whichdoesnotseemtobearestrictionfortherecurrencefunc-tions.
Thetime-seriesinthissetofsimulationswereomittedhereforsakeofconciseness,sincethemixingmatrix,theoriginalchaoticsourceandtherecoveredchaoticsignal(asshowninFig.5)havenotbeenchangedwhenadaptingtheseparatingsystemusingrecurrence-basedscorefunctions.
SinceRQAisbasedoncorrelationcharacteristicsde?nedbyarecurrencemap,aninterestingandchallengingsituationtotheproposedextractionmethodwouldappearifwetriedtosepa-ratechaoticandstochasticsourceswiththesamesecond-orderautocorrelationcharacteristics.Chaotictimeseriesdisplaysanex-ponentialdecayintheautocorrelationfunctionrelatedtothepres-enceofatleastonepositiveLyapunovexponent[1].Thisautocor-relationbehaviorcanbegeneratedby?lteringawhitegaussianprocessusingtheauto-regressiveYule-Walkerframework[26],inordertoobtainacoloredgaussiannoisewithcorrelationcharac-teristicssimilartothoseofthechaoticsignal(Fig.7(a)).Itisinter-estingtoobservethatthegeneratedstochasticsourceresemblesthechaotictimeseriesinsometimeintervals(Fig.7(b)),which
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 第五章路线勘测设计
- 0129-物理化学直播03-04
- 《公司的运营》学案[最新]
- 2003级大学物理(II)期末试题华工大学物理试卷,各年试卷及答案,大物下
- 环评复习资料
- 教学大纲
- 2015年荆楚理工学院普通专升本《设计色彩》考试大纲
- 《现代汉语(一)》课程教学大纲
- 雅思阅读长难句要学会去伪存真
- 2015年荆楚理工学院普通专升本《设计素描》考试大纲
- 汽车发动机电控技术
- 北京广播学院电编辅修摄影技巧课程[最新]
- 《新能源汽车技术》课程标准(姜娥)
- 物理化学ppt
- 单片机C51进修笔记[宝典]
- 第三章 不连续函数,富氏变换与积分方程
- 2015年荆楚理工学院普通专升本《植物学》考试大纲
- 2015年荆楚理工学院普通专升本音乐表演专业《音乐术科》考试大纲
- 工程量清单学习资料
- 中药药理学教学大纲
- 汽车发动机电控技术概述
- 第五章 薪酬管理
- 2015年荆楚理工学院普通专升本音乐表演专业《基础综合》考试大纲
- 【精品】科学素养的含义和培养53
- 学习材料_OpenCV
- 新课程初中物理教学法(任康叔)
- 弹性力学
- [最新]第一章单片机基础常识
- 生物反馈技术简介
- 第5章 80C51单片机的中断与定时
网友关注视频
- 化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
- 外研版英语七年级下册module3 unit2第一课时
- 小学英语单词
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
- 8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
- 七年级英语下册 上海牛津版 Unit9
- 精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
- 外研版英语七年级下册module1unit3名词性物主代词讲解
- 冀教版英语四年级下册第二课
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
- 二年级下册数学第三课 搭一搭⚖⚖
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 七年级英语下册 上海牛津版 Unit5
- 苏科版八年级数学下册7.2《统计图的选用》
- 外研版八年级英语下学期 Module3
- 《空中课堂》二年级下册 数学第一单元第1课时
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理