教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 工程科技> 兵器/核科学> Machine Vision for a Micro Weeding Robot in a

Machine Vision for a Micro Weeding Robot in a

上传者:陈新祥
|
上传时间:2015-05-05
|
次下载

Machine Vision for a Micro Weeding Robot in a

机器人、控制、系统

内容需要下载文档才能查看

BiosystemsEngineering(2003)85(4),393–404

内容需要下载文档才能查看

doi:10.1016/S1537-5110(03)00078-3

AE}AutomationandEmergingTechnologies

Available online at http://wendang.chazidian.com

MachineVisionforaMicroWeedingRobotinaPaddyField

B.Chen1;S.Tojo2;K.Watanabe2

1

DepartmentofEngineeringCollege,ChinaAgriculturalUniversity,P.O.Box50,QinghuaDonglu#17,HaidianDistrict,Beijing100083,China;

e-mailofcorrespondingauthor:chenbingqi@http://wendang.chazidian.com

2

DepartmentofEnvironmentalandAgriculturalEngineering,TokyoUniversityofAgricultureandTechnology,3-5-8,Saiwai-cho,Fuchu,

Tokyo,183-8509Japan;e-mail:tojo@cc.tuat.ac.jp

(Received24December2001;acceptedinrevisedform9April2003;publishedonline7June2003)

Thestudydevelopedanimageprocessingmethodtodeterminethetraveldirectrixforamicroweedingrobotinapaddy eld.Theprocessingsamples,whichincluded24imagesineachsample,wereselectedfromthevideotapeswhichwereobtainedonaweeklybasis,whenthecameramanuallyrevolved3608eighttimesateachheightandanglepositioninthespacebetweenthericerowsfromthethirddayaftertransplantingto7weeks.Thetargetimagewasabstractedfromthe24imagesbyanalysingthedistributionofbluepixelsinthecolourimageandthedistributionofblackpixelsinitsbinaryimage.Thecandidatepointsforthedirectrixlineinthetargetimagewereobtainedbyanalysingeachhorizontallinepro leofitsbinaryimageortheblueimageaccordingtothelevelofgrowthinthepaddy eld.Thetraveldirectrixlinewasdetectedbypassingaknown-pointHoughtransform.Thedirectrixlinesofall69samplesusedinthestudywerecorrectlydetected.Theprocessingtimesrequiredtodrawthedirectrixlineafterreadingthe24imageswereabout0Á4–0Á8s.

#2003SilsoeResearchInstitute.AllrightsreservedPublishedbyElsevierScienceLtd

1.Introduction

RiceisthemainfoodoftheJapanese.Soricefarminghasanimportantsigni canceinJapan.Theagriculturalmachinesforricefarming,including eldcultivating,ricetransplanting,ricegrowthmanagementandriceharvesting,areapproachingcurrentdesignoptimums.Futureresearchisnowaimedatimprovedautomation,e.g.theuseofrobots.Developmentprojectshaverecentlyproducedvariousinnovations:Yukumotoetal.(1998a,1998b,1998c)developedatillingrobotguidedbyapositionsensingsystem(PSS)andageomagneticdirectrixsensor(GDS),Nagasakaetal.(1999)developedanautonomoustransplanterusingareal-timekinematicglobalpositionsystem(RTKGPS),Chosaetal.(2000)developedanautomaticpaddy eldmanagementmachine,whichtravelsalongapreparedguidancecable,Iidaetal.(1999a,1999b)andMatsuuraetal.(2001)developedanautonomousfollow-upvehicleguidancesystemsothatoneortwoharvesterswereabletofollowamanuallydrivencombineharvester,auto-matically.

Inpreviousstudies,ariceseedlingrowandpaddy eldridgedetectionsystem(RRDS),whichguidedan

1537-5110/03/$30.00

automaticricetransplanter(Chenetal.,1997,1998,1999a,1999b;Watanabeetal.,1997),andatravelroutedetectionmethod(TRDM),whichguidedanautomatedmanagementmachineinpaddy elds(Chenetal.,2002),weredevelopedusingimageprocessing.Forreducingtheenvironmentalimpactfromherbicideutilisation,theresearchaboutweeddetectionbyimageprocessinginthe eldincreasedinrecentyears(Burksetal.,2000;Ei-Fakietal.,2000;Tianetal.,1999).Thesestudieswereaimedatsprayingtheherbicideondetectedweedorcropareastoreducetheherbicideutilisation.However,ifamicrorobotcouldbedevelopedtotravelalongthecroprows,thenweedingcouldbecompletedbymechanicalmeansratherthanwithherbicides.Somestudiesonamicroweedingrobotinapaddy eldhavebeenreported(Sekietal.,1998,1999,2000;Hayashietal.,2000).However,thesestudiesfocusedontheeffectofweedinganddidnotreportaneffectiveguidancemethod.

Otherthanimageprocessing,alaserlightsensor,ultrasonicsensor,orinfraredsensorcanbeusedtosensethedistancefromthesensortoanobject.Amongthesesensors,theinfraredsensoristheleastexpensive(aboutUS$2persensor)andcanbeusedforneardistance

393

#2003SilsoeResearchInstitute.Allrightsreserved

PublishedbyElsevierScienceLtd

机器人、控制、系统

内容需要下载文档才能查看

394

B.CHENETAL.

sensing,therebymakingitsuitableforamicroweedingrobottravellingbetweenthericerows,withaninter-rowspacingof30cm,butitispoorinsunlight.Theothersensors,effectiveoveradistanceof20cm,areunsuitableforusebetweenrows.Further,theultrasonicsensorisnoteffectiveforusewithsmallriceseedlings.Therefore,thisstudyisaimedatdevelopinganimageprocessingmethodtoguideamicroweedingrobotinapaddy eld.Furthermore,the eldtrialsforthisstudyarecarriedoutwithplantsatlatergrowthstagesthanintheRRDSandTRDMstudies.Therobottravelsintothetunnelbetweenthericerows,andtheimageswerecompletelydifferentfromthoseofpreviousstudieswhentherobotsensorrevolved.Owingtotheagilityofthesmallbodyoftherobot,theorientationoftherobotcouldbechangedeasilytoreceivedifferentimagesintheroboteye.Therefore,itnecessarytoredeterminethetraveldirectrixafterstoppingforweedingwork.

Withtheseconditionsinmind,theobjectivesofthepresentstudyweretodevelopanimageprocessingdetectionalgorithmfordeterminingthetraveldirectrix

whenthemicroweedingrobotisrevolvinginthepaddy eld.Thealgorithmhadtobeeffectiveinvariousorientationsofthemicroweedingrobotapplicabletodrivingduringtheentiregrowingperiodfromtheplantingofriceseedlingstotheharvesting.

2.Equipmentandsampling2.1.Equipment

Todevelopamachinevisionsystemthatdoesnotneedcostlyequipment,aninexpensivemacrocameraset,aTR-89CwirelesssurveillancecameraandaTR-801Creceiver,withatotalcostofaboutUS$350inJapan,wereusedtosamplethevideoimagesinthepaddy eld.Atelevisionsetwasusedtoreceivethesignalviathereceiver,andstorethevideoimagesinvideotape.Thecamerahada63mmmetricchargecoupleddevice(CCD)imagesensorwith250000pixelsineffect.TheimagesignalinNationalTelevisionSystemsCommittee(NTSC)formatoutputtedbyaterminalwithavoltage

机器人、控制、系统

内容需要下载文档才能查看

MACHINEVISIONFORMICROWEEDINGROBOT

395

of1Vandaresistanceof75O.Thefocallengthofthecameralenswas3Á7mmandtheaperturesettingwasf2Á0.Thelowestintensityoftheimagedobjectwas2l.Thefrequencyofthetransmittedimagewas2Á4GHz.Thecamerasizeswere32mminwidth,27mminheight,and68mminlength(CoronaElectronic,Inc.).

TheimagesforprocessingwerecapturedusingaFDM-PCIIIimagedigitiserboardprovidedbyPho-tron,Inc.Imageprocessingwasperformedusingapersonalcomputerwithapentium400MHzcentralprocessingunit(CPU).Processingsoftwarewasdevel-opedusingMicrosoftVisualC++6.0.2.2.Imageprocessingsampling

Transplantingofthericeseedlingswasperformedon13June2001,attheexperimentalfarmofTokyoUniversityofAgricultureandTechnology.Samplingoperationswereperformedfrom16Juneto4August2001onaweeklybasis,givingatotalofeightsampleperiods.Thecamerawaspositionedapproximately10,20,and30cmabovethesurfaceofthewaterandwaspositionedapproximatelyhorizontal,facing10and208downwardfromthehorizontalateachheightposition.Videotapesampleswereobtainedwhenthecamerawasmanuallyrevolved3608ateachheightandangleposition(Fig.1).Duringthesamplingperiod,thericeheightwasapproximately10–65cmabovethewatersurface.

Atotalof69processingsampleswereobtained.Eachprocessingsamplehad24images,whichwerecapturedfromthevideotapesamplesapproximatelyatevenintervalsandsavedinvideo leformat.Twoparametersoftheimageinputboard,brightnessandcontrast,werebothestablishedasthemediumvaluewhilesamplingthe

Fig.1.Paddy eldandcamera

images.Theimagesizewas512by480pixels(seeFig.4).Theprocessingsamplesweregivenanidenti cationcode:Smn(S,samplenumber;m,weeknumber(0–7);n,videotapenumber(1–9))(Table1).

3.Detectingalgorithm

Avideo le,whichincluded24images,wasreadinto24framesofthecomputermemorytopreparethedetectingprocessing.Whentheprocessingwasstarted,theparameters,suchasprocessingframeF,maximumblueparametervalueBpm,max,maximumobjectnumberNO,max,maximumarearate1AR1,max,maximumarearate2AR2,max,judgedframeFJandcandidateframe1FC1,wereinitialisedasF51,Bpm,max50,NO,max50,AR1,max50,AR2,max50,FJ5À1andFC15À1,respec-tively(Fig.2).Theimageswerethenprocessedfromframe1toframe24,framebyframe,todeterminetheimagewherethespacebetweenthericerowswasnearestthecentreoftheimage(calledthetargetimage).Afterprocessingtodeterminethetargetimage,candidatepointsoftraveldirectrixweredetectedoneachhorizontallineinthetargetimage.Thetraveldirectrixwasthendetectedbythemethodcalled‘passingaknownpointHoughtransform(PKPHT)’(Chenetal.,1997),whichestablishedaknownpoint,andthetraveldirectrixisassumedfromthemaximumnumberofcollineardetectedcandidatepointspassingtheknownpoint.3.1.Determiningtargetimage

3.1.1.Makingthebluevaluedistributionandcalculatingtheblueparameter

Thetargetimagewasthatofthespacebetweenthericerowsnearestthecentreoftheimageinthefullimagescapturedwhenthecamerawasrevolving.Thus,thecentreofthebluedistributioninthetargetimagewasnearestthecentreoftheimageinthefullimages.Therefore,ablueparameterBpmcouldbeestablishedtojudgethetargetimage.

Whenanimagewasprocessed, rst,foreachverticalline,eachpixelbluevaluewassummedtoobtainthebluedistributiongraphb(x)wherexistheco-ordinate

ontheabscissaoftheimage.Themeanb

%,andstandarddeviationSdbofb(x)werecalculated,respectively,usingthefollowingequations

511b%51X512bðxÞð1Þ

x50

r S1db5X511À512

x50b%

ÀbðxÞÁ2

ð2Þ

机器人、控制、系统

396

B.CHENETAL.

Table1

Samplingconditions

Week

Date(2001)

Riceheight,cm

Weather

Cameraheight,cm

Sampleimageidenti ers*

Cameraangle,deg0

16Jun

10

Cloudy

102030102030102030102030102030102030102030102030

S01}}S11S14S17S21S24S27S31S34S37S41S44S47S51S54S57S61S64S67S71S74S77

10S02S05S08S12S15S18S22S25S28S32S35S38S42S45S48S52S55S58S62S65S68S72S75S78

20}S06S09S13S16S19S23S26S29S33S36S39S43S46S49S53S56S59S63S66S69S73S76S79

122Jun12Cloudy

229Jun20Sunny

306Jul25Cloudy

413Jul30Sunny

519Jul40Sunny

627Jul55Sunny

704Aug65Cloudy

Note:transplantingwasperformedon13Jun2001.*

Sampleimageidenti ers:Smn–S,samplenumber;m,weeknumber(0–7);n,videotapenumber(1–9);‘}’,nosample.

Next,thedataweresmoothedbyaveragingoveragroupof20pixelswidth,movingacrosstheoriginaldatapixelbypixel,andthedistributionb(x)wasevaluatedasbelowtoobtaintheblueparameterBpm.ThehighestpointP,whoseco-ordinatewasxP,wassoughtonthedistributionb(x)(Fig.3).Ifb(xP)>bu,wherebuistheupperboundoftotalblueintensityequal%þSdb,theminimumpointsonbothsidesofPweretob

searchedabovethatvaluebu,andthepoint,whichwasthehighestoftheminimumpoints,wasnamedp1,whoseco-ordinatewasxp1.Theintersectionbetweenthedistributionb(x)andthebluevalueatp1ontheoppositesideofPwasnamedp2,whoseco-ordinatewasxp2.IftherewasnominimumpointoneithersideofPabovetheupperboundoftotalblueintensitybu,thetwointersectionsbetweenthedistributionb(x)andbuonbothsidesofPwereusedasp1andp2.Theblue

parameterBpmwasobtainedusingEqn(3)when512/2ÀxP¼0orEqn(4)when256ÀxP50.Otherwise,ifb(xP)4buwastrue,Bpmwas xedas0.ThenumberofmaximumpeakpointsNP,abovethelinebu,wasalsoobtainedwhensearchingforthehighestblueintensitypointP:

Á2Pxp2À

bðxÞÀbðxÞp1xp1

Bpm5256Àxp¼0ð3Þ

j256Àxpj

Bpm5

xp2XÀxp1

Á2

bðxÞÀbðxp1Þ;

256Àxp50ð4Þ

IfthecalculatedvalueoftheblueparameterBpmexceededthecurrentmaximumvalueBpm,max,thenitreplacedthevalue,Bpm,max5Bpm,andtheprocesswastakentothenextstep(Fig.2).

机器人、控制、系统

内容需要下载文档才能查看

MACHINEVISIONFORMICROWEEDINGROBOT

397

%,meanpixelblueFig.2.Flowchartfordetectingdirection:AR,arearate;AR1,max,AR2,max,maximumarearates1and2;b

intensity;Bpm,blueparameter;Bpm,max,maximumblueparameter;F,processingframe;FC1,FC2,candidateframenumbers1–2;FJ,judgedframe;LR,linerate;NO,max,maximumobjectnumber;NO,objectnumber;NP,numberofpeaks;Sdb,standarddeviationof

bluedistribution

3.1.2.Judgingthebinaryimage

Owingtothein uenceofre ectedlight,themaximumvalueforBpm,maxmaynotbelongtothetargetimage;therefore,theimagewiththemaximumvalueforBpm,maxhastobecheckedbyotherconditionstoascertainthatitisthetargetimage.

Iftheimagepassedtheabovestep,thebinaryimagewasthenjudged.ThebinaryimagewasobtainedbycomparingtheblueintensityB,andthegreenintensityGofeachpixel.IfG>Bwastruethepixelwas xedas255(white,representingriceplants);forotherconditionsthepixelwas xedas0(black,representingwater).Atrapezium,sized64(5512/8)pixelsatthetopand256(5512/2)pixelsatthebottom(eachhorizontallinelengthwas64+y(256-64)/480pixels,whereyistheordinateoftheimagefrom0to479),centredatthepositionwithco-ordinatexP(Fig.4),wasestablishedonthebinaryimagetocountthenumberofblackpixels,whichwascalledtheobjectnumberNO.ThearearateARandthelinerateLR(Fig.2)werethencalculatedinthetrapeziumarea.ThevalueforARwasobtainedbydividingthenumberofobjectsNObythetotalpixelsinthetrapeziumarea.ThevalueforLRwasobtainedbydividingh,thenumberoflinescontaining55%blackpixelsatthetopoftheimageinthetrapeziumarea,by480,theimageheight(Fig.4).AftercountingtheobjectnumberNO,calculatingthearearateARandthelinerateLR,thesedatawerecheckedinordertodecidesubsequentprocessing.IfallofthecriteriaNO>NO,max,

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

七年级英语下册 上海牛津版 Unit9
第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
冀教版小学数学二年级下册第二单元《租船问题》
六年级英语下册上海牛津版教材讲解 U1单词
外研版英语三起5年级下册(14版)Module3 Unit2
冀教版小学数学二年级下册第二单元《余数和除数的关系》
北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
沪教版牛津小学英语(深圳用)五年级下册 Unit 1
苏科版数学 八年级下册 第八章第二节 可能性的大小
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
七年级英语下册 上海牛津版 Unit5
沪教版八年级下册数学练习册一次函数复习题B组(P11)
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
沪教版八年级下册数学练习册21.3(3)分式方程P17
外研版英语七年级下册module1unit3名词性物主代词讲解
北师大版数学四年级下册第三单元第四节街心广场
每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
外研版英语七年级下册module3 unit2第一课时
外研版八年级英语下学期 Module3
外研版英语七年级下册module3 unit1第二课时
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
冀教版英语三年级下册第二课
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
《小学数学二年级下册》第二单元测试题讲解