Machine Vision for a Micro Weeding Robot in a
上传者:陈新祥|上传时间:2015-05-05|密次下载
Machine Vision for a Micro Weeding Robot in a
机器人、控制、系统
内容需要下载文档才能查看BiosystemsEngineering(2003)85(4),393–404
内容需要下载文档才能查看doi:10.1016/S1537-5110(03)00078-3
AE}AutomationandEmergingTechnologies
Available online at http://wendang.chazidian.com
MachineVisionforaMicroWeedingRobotinaPaddyField
B.Chen1;S.Tojo2;K.Watanabe2
1
DepartmentofEngineeringCollege,ChinaAgriculturalUniversity,P.O.Box50,QinghuaDonglu#17,HaidianDistrict,Beijing100083,China;
e-mailofcorrespondingauthor:chenbingqi@http://wendang.chazidian.com
2
DepartmentofEnvironmentalandAgriculturalEngineering,TokyoUniversityofAgricultureandTechnology,3-5-8,Saiwai-cho,Fuchu,
Tokyo,183-8509Japan;e-mail:tojo@cc.tuat.ac.jp
(Received24December2001;acceptedinrevisedform9April2003;publishedonline7June2003)
Thestudydevelopedanimageprocessingmethodtodeterminethetraveldirectrixforamicroweedingrobotinapaddy eld.Theprocessingsamples,whichincluded24imagesineachsample,wereselectedfromthevideotapeswhichwereobtainedonaweeklybasis,whenthecameramanuallyrevolved3608eighttimesateachheightandanglepositioninthespacebetweenthericerowsfromthethirddayaftertransplantingto7weeks.Thetargetimagewasabstractedfromthe24imagesbyanalysingthedistributionofbluepixelsinthecolourimageandthedistributionofblackpixelsinitsbinaryimage.Thecandidatepointsforthedirectrixlineinthetargetimagewereobtainedbyanalysingeachhorizontallinepro leofitsbinaryimageortheblueimageaccordingtothelevelofgrowthinthepaddy eld.Thetraveldirectrixlinewasdetectedbypassingaknown-pointHoughtransform.Thedirectrixlinesofall69samplesusedinthestudywerecorrectlydetected.Theprocessingtimesrequiredtodrawthedirectrixlineafterreadingthe24imageswereabout0Á4–0Á8s.
#2003SilsoeResearchInstitute.AllrightsreservedPublishedbyElsevierScienceLtd
1.Introduction
RiceisthemainfoodoftheJapanese.Soricefarminghasanimportantsigni canceinJapan.Theagriculturalmachinesforricefarming,including eldcultivating,ricetransplanting,ricegrowthmanagementandriceharvesting,areapproachingcurrentdesignoptimums.Futureresearchisnowaimedatimprovedautomation,e.g.theuseofrobots.Developmentprojectshaverecentlyproducedvariousinnovations:Yukumotoetal.(1998a,1998b,1998c)developedatillingrobotguidedbyapositionsensingsystem(PSS)andageomagneticdirectrixsensor(GDS),Nagasakaetal.(1999)developedanautonomoustransplanterusingareal-timekinematicglobalpositionsystem(RTKGPS),Chosaetal.(2000)developedanautomaticpaddy eldmanagementmachine,whichtravelsalongapreparedguidancecable,Iidaetal.(1999a,1999b)andMatsuuraetal.(2001)developedanautonomousfollow-upvehicleguidancesystemsothatoneortwoharvesterswereabletofollowamanuallydrivencombineharvester,auto-matically.
Inpreviousstudies,ariceseedlingrowandpaddy eldridgedetectionsystem(RRDS),whichguidedan
1537-5110/03/$30.00
automaticricetransplanter(Chenetal.,1997,1998,1999a,1999b;Watanabeetal.,1997),andatravelroutedetectionmethod(TRDM),whichguidedanautomatedmanagementmachineinpaddy elds(Chenetal.,2002),weredevelopedusingimageprocessing.Forreducingtheenvironmentalimpactfromherbicideutilisation,theresearchaboutweeddetectionbyimageprocessinginthe eldincreasedinrecentyears(Burksetal.,2000;Ei-Fakietal.,2000;Tianetal.,1999).Thesestudieswereaimedatsprayingtheherbicideondetectedweedorcropareastoreducetheherbicideutilisation.However,ifamicrorobotcouldbedevelopedtotravelalongthecroprows,thenweedingcouldbecompletedbymechanicalmeansratherthanwithherbicides.Somestudiesonamicroweedingrobotinapaddy eldhavebeenreported(Sekietal.,1998,1999,2000;Hayashietal.,2000).However,thesestudiesfocusedontheeffectofweedinganddidnotreportaneffectiveguidancemethod.
Otherthanimageprocessing,alaserlightsensor,ultrasonicsensor,orinfraredsensorcanbeusedtosensethedistancefromthesensortoanobject.Amongthesesensors,theinfraredsensoristheleastexpensive(aboutUS$2persensor)andcanbeusedforneardistance
393
#2003SilsoeResearchInstitute.Allrightsreserved
PublishedbyElsevierScienceLtd
机器人、控制、系统
内容需要下载文档才能查看394
B.CHENETAL.
sensing,therebymakingitsuitableforamicroweedingrobottravellingbetweenthericerows,withaninter-rowspacingof30cm,butitispoorinsunlight.Theothersensors,effectiveoveradistanceof20cm,areunsuitableforusebetweenrows.Further,theultrasonicsensorisnoteffectiveforusewithsmallriceseedlings.Therefore,thisstudyisaimedatdevelopinganimageprocessingmethodtoguideamicroweedingrobotinapaddy eld.Furthermore,the eldtrialsforthisstudyarecarriedoutwithplantsatlatergrowthstagesthanintheRRDSandTRDMstudies.Therobottravelsintothetunnelbetweenthericerows,andtheimageswerecompletelydifferentfromthoseofpreviousstudieswhentherobotsensorrevolved.Owingtotheagilityofthesmallbodyoftherobot,theorientationoftherobotcouldbechangedeasilytoreceivedifferentimagesintheroboteye.Therefore,itnecessarytoredeterminethetraveldirectrixafterstoppingforweedingwork.
Withtheseconditionsinmind,theobjectivesofthepresentstudyweretodevelopanimageprocessingdetectionalgorithmfordeterminingthetraveldirectrix
whenthemicroweedingrobotisrevolvinginthepaddy eld.Thealgorithmhadtobeeffectiveinvariousorientationsofthemicroweedingrobotapplicabletodrivingduringtheentiregrowingperiodfromtheplantingofriceseedlingstotheharvesting.
2.Equipmentandsampling2.1.Equipment
Todevelopamachinevisionsystemthatdoesnotneedcostlyequipment,aninexpensivemacrocameraset,aTR-89CwirelesssurveillancecameraandaTR-801Creceiver,withatotalcostofaboutUS$350inJapan,wereusedtosamplethevideoimagesinthepaddy eld.Atelevisionsetwasusedtoreceivethesignalviathereceiver,andstorethevideoimagesinvideotape.Thecamerahada63mmmetricchargecoupleddevice(CCD)imagesensorwith250000pixelsineffect.TheimagesignalinNationalTelevisionSystemsCommittee(NTSC)formatoutputtedbyaterminalwithavoltage
机器人、控制、系统
内容需要下载文档才能查看MACHINEVISIONFORMICROWEEDINGROBOT
395
of1Vandaresistanceof75O.Thefocallengthofthecameralenswas3Á7mmandtheaperturesettingwasf2Á0.Thelowestintensityoftheimagedobjectwas2l.Thefrequencyofthetransmittedimagewas2Á4GHz.Thecamerasizeswere32mminwidth,27mminheight,and68mminlength(CoronaElectronic,Inc.).
TheimagesforprocessingwerecapturedusingaFDM-PCIIIimagedigitiserboardprovidedbyPho-tron,Inc.Imageprocessingwasperformedusingapersonalcomputerwithapentium400MHzcentralprocessingunit(CPU).Processingsoftwarewasdevel-opedusingMicrosoftVisualC++6.0.2.2.Imageprocessingsampling
Transplantingofthericeseedlingswasperformedon13June2001,attheexperimentalfarmofTokyoUniversityofAgricultureandTechnology.Samplingoperationswereperformedfrom16Juneto4August2001onaweeklybasis,givingatotalofeightsampleperiods.Thecamerawaspositionedapproximately10,20,and30cmabovethesurfaceofthewaterandwaspositionedapproximatelyhorizontal,facing10and208downwardfromthehorizontalateachheightposition.Videotapesampleswereobtainedwhenthecamerawasmanuallyrevolved3608ateachheightandangleposition(Fig.1).Duringthesamplingperiod,thericeheightwasapproximately10–65cmabovethewatersurface.
Atotalof69processingsampleswereobtained.Eachprocessingsamplehad24images,whichwerecapturedfromthevideotapesamplesapproximatelyatevenintervalsandsavedinvideo leformat.Twoparametersoftheimageinputboard,brightnessandcontrast,werebothestablishedasthemediumvaluewhilesamplingthe
Fig.1.Paddy eldandcamera
images.Theimagesizewas512by480pixels(seeFig.4).Theprocessingsamplesweregivenanidenti cationcode:Smn(S,samplenumber;m,weeknumber(0–7);n,videotapenumber(1–9))(Table1).
3.Detectingalgorithm
Avideo le,whichincluded24images,wasreadinto24framesofthecomputermemorytopreparethedetectingprocessing.Whentheprocessingwasstarted,theparameters,suchasprocessingframeF,maximumblueparametervalueBpm,max,maximumobjectnumberNO,max,maximumarearate1AR1,max,maximumarearate2AR2,max,judgedframeFJandcandidateframe1FC1,wereinitialisedasF51,Bpm,max50,NO,max50,AR1,max50,AR2,max50,FJ5À1andFC15À1,respec-tively(Fig.2).Theimageswerethenprocessedfromframe1toframe24,framebyframe,todeterminetheimagewherethespacebetweenthericerowswasnearestthecentreoftheimage(calledthetargetimage).Afterprocessingtodeterminethetargetimage,candidatepointsoftraveldirectrixweredetectedoneachhorizontallineinthetargetimage.Thetraveldirectrixwasthendetectedbythemethodcalled‘passingaknownpointHoughtransform(PKPHT)’(Chenetal.,1997),whichestablishedaknownpoint,andthetraveldirectrixisassumedfromthemaximumnumberofcollineardetectedcandidatepointspassingtheknownpoint.3.1.Determiningtargetimage
3.1.1.Makingthebluevaluedistributionandcalculatingtheblueparameter
Thetargetimagewasthatofthespacebetweenthericerowsnearestthecentreoftheimageinthefullimagescapturedwhenthecamerawasrevolving.Thus,thecentreofthebluedistributioninthetargetimagewasnearestthecentreoftheimageinthefullimages.Therefore,ablueparameterBpmcouldbeestablishedtojudgethetargetimage.
Whenanimagewasprocessed, rst,foreachverticalline,eachpixelbluevaluewassummedtoobtainthebluedistributiongraphb(x)wherexistheco-ordinate
ontheabscissaoftheimage.Themeanb
%,andstandarddeviationSdbofb(x)werecalculated,respectively,usingthefollowingequations
511b%51X512bðxÞð1Þ
x50
r S1db5X511À512
x50b%
ÀbðxÞÁ2
ð2Þ
机器人、控制、系统
396
B.CHENETAL.
Table1
Samplingconditions
Week
Date(2001)
Riceheight,cm
Weather
Cameraheight,cm
Sampleimageidenti ers*
Cameraangle,deg0
16Jun
10
Cloudy
102030102030102030102030102030102030102030102030
S01}}S11S14S17S21S24S27S31S34S37S41S44S47S51S54S57S61S64S67S71S74S77
10S02S05S08S12S15S18S22S25S28S32S35S38S42S45S48S52S55S58S62S65S68S72S75S78
20}S06S09S13S16S19S23S26S29S33S36S39S43S46S49S53S56S59S63S66S69S73S76S79
122Jun12Cloudy
229Jun20Sunny
306Jul25Cloudy
413Jul30Sunny
519Jul40Sunny
627Jul55Sunny
704Aug65Cloudy
Note:transplantingwasperformedon13Jun2001.*
Sampleimageidenti ers:Smn–S,samplenumber;m,weeknumber(0–7);n,videotapenumber(1–9);‘}’,nosample.
Next,thedataweresmoothedbyaveragingoveragroupof20pixelswidth,movingacrosstheoriginaldatapixelbypixel,andthedistributionb(x)wasevaluatedasbelowtoobtaintheblueparameterBpm.ThehighestpointP,whoseco-ordinatewasxP,wassoughtonthedistributionb(x)(Fig.3).Ifb(xP)>bu,wherebuistheupperboundoftotalblueintensityequal%þSdb,theminimumpointsonbothsidesofPweretob
searchedabovethatvaluebu,andthepoint,whichwasthehighestoftheminimumpoints,wasnamedp1,whoseco-ordinatewasxp1.Theintersectionbetweenthedistributionb(x)andthebluevalueatp1ontheoppositesideofPwasnamedp2,whoseco-ordinatewasxp2.IftherewasnominimumpointoneithersideofPabovetheupperboundoftotalblueintensitybu,thetwointersectionsbetweenthedistributionb(x)andbuonbothsidesofPwereusedasp1andp2.Theblue
parameterBpmwasobtainedusingEqn(3)when512/2ÀxP¼0orEqn(4)when256ÀxP50.Otherwise,ifb(xP)4buwastrue,Bpmwas xedas0.ThenumberofmaximumpeakpointsNP,abovethelinebu,wasalsoobtainedwhensearchingforthehighestblueintensitypointP:
Á2Pxp2À
bðxÞÀbðxÞp1xp1
Bpm5256Àxp¼0ð3Þ
j256Àxpj
Bpm5
xp2XÀxp1
Á2
bðxÞÀbðxp1Þ;
256Àxp50ð4Þ
IfthecalculatedvalueoftheblueparameterBpmexceededthecurrentmaximumvalueBpm,max,thenitreplacedthevalue,Bpm,max5Bpm,andtheprocesswastakentothenextstep(Fig.2).
机器人、控制、系统
内容需要下载文档才能查看MACHINEVISIONFORMICROWEEDINGROBOT
397
%,meanpixelblueFig.2.Flowchartfordetectingdirection:AR,arearate;AR1,max,AR2,max,maximumarearates1and2;b
intensity;Bpm,blueparameter;Bpm,max,maximumblueparameter;F,processingframe;FC1,FC2,candidateframenumbers1–2;FJ,judgedframe;LR,linerate;NO,max,maximumobjectnumber;NO,objectnumber;NP,numberofpeaks;Sdb,standarddeviationof
bluedistribution
3.1.2.Judgingthebinaryimage
Owingtothein uenceofre ectedlight,themaximumvalueforBpm,maxmaynotbelongtothetargetimage;therefore,theimagewiththemaximumvalueforBpm,maxhastobecheckedbyotherconditionstoascertainthatitisthetargetimage.
Iftheimagepassedtheabovestep,thebinaryimagewasthenjudged.ThebinaryimagewasobtainedbycomparingtheblueintensityB,andthegreenintensityGofeachpixel.IfG>Bwastruethepixelwas xedas255(white,representingriceplants);forotherconditionsthepixelwas xedas0(black,representingwater).Atrapezium,sized64(5512/8)pixelsatthetopand256(5512/2)pixelsatthebottom(eachhorizontallinelengthwas64+y(256-64)/480pixels,whereyistheordinateoftheimagefrom0to479),centredatthepositionwithco-ordinatexP(Fig.4),wasestablishedonthebinaryimagetocountthenumberofblackpixels,whichwascalledtheobjectnumberNO.ThearearateARandthelinerateLR(Fig.2)werethencalculatedinthetrapeziumarea.ThevalueforARwasobtainedbydividingthenumberofobjectsNObythetotalpixelsinthetrapeziumarea.ThevalueforLRwasobtainedbydividingh,thenumberoflinescontaining55%blackpixelsatthetopoftheimageinthetrapeziumarea,by480,theimageheight(Fig.4).AftercountingtheobjectnumberNO,calculatingthearearateARandthelinerateLR,thesedatawerecheckedinordertodecidesubsequentprocessing.IfallofthecriteriaNO>NO,max,
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 单摄像机立体视觉测量的研究_邾继贵
- 光笔式大视场三维视觉测量系统_冯萍
- 纳米材料
- 百度预装联盟拿包申请
- 免账号密码玩转百度
- Abnormal magnetic behaviors and large magnetocaloric effect in MnPS3 nanoparticles
- 工业机器人三维仿真系统的设计与实现_杨华
- 以WiFi和ZigBee联合定位的消防灭火救援系统
- 房屋租赁合同 2
- 南京写字楼装修
- 四川(成都新视觉)亚克力标识标牌社区标识商业标识
- 水下机器人视觉控制系统的设计与实现_刘卓夫
- 全国工程质量治理行动见真格 防水工程涉案达3起
- 海洋环境中材料腐蚀数据采集处理网络系统的研究
- 坡头村典型材料
- X70管线钢中析出相的分析_孔萃敏
- CSX网络安全认证白皮书
- 肠内与肠外营养影响对胃肠道肿瘤术后影响的Meta分析-修改[1].jsp
- 烘箱使用说明
- Machine Vision for a Micro Weeding Robot in a
- 武汉工厂装修
- 基于惯性导航系统的海底管道轨迹描述技术研究
- 基于菱形模板的摄像机标定方法_刘杰才
- 武汉餐厅装修设计技巧_0
- 精肉馅里的灰尘我们无法分辨
- “治水行动”压榨纸企升级动力 国昌天宇先发优势凸显
- 精密单点定位技术应用论文
- 低频信号发生器设计
- 番茄收获机器人视觉系统标定的研究_闫薇
- 基于数字图像识别的算法设计_吴元林
网友关注视频
- 飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
- 冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 外研版英语三起6年级下册(14版)Module3 Unit2
- 苏科版八年级数学下册7.2《统计图的选用》
- 3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 二年级下册数学第一课
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
- 外研版英语七年级下册module3 unit2第一课时
- 小学英语单词
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
- 北师大版小学数学四年级下册第15课小数乘小数一
- 化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 外研版英语七年级下册module1unit3名词性物主代词讲解
- 冀教版英语五年级下册第二课课程解读
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理