Machine Vision for a Micro Weeding Robot in a
上传者:陈新祥|上传时间:2015-05-05|密次下载
Machine Vision for a Micro Weeding Robot in a
机器人、控制、系统
内容需要下载文档才能查看BiosystemsEngineering(2003)85(4),393–404
内容需要下载文档才能查看doi:10.1016/S1537-5110(03)00078-3
AE}AutomationandEmergingTechnologies
Available online at http://wendang.chazidian.com
MachineVisionforaMicroWeedingRobotinaPaddyField
B.Chen1;S.Tojo2;K.Watanabe2
1
DepartmentofEngineeringCollege,ChinaAgriculturalUniversity,P.O.Box50,QinghuaDonglu#17,HaidianDistrict,Beijing100083,China;
e-mailofcorrespondingauthor:chenbingqi@http://wendang.chazidian.com
2
DepartmentofEnvironmentalandAgriculturalEngineering,TokyoUniversityofAgricultureandTechnology,3-5-8,Saiwai-cho,Fuchu,
Tokyo,183-8509Japan;e-mail:tojo@cc.tuat.ac.jp
(Received24December2001;acceptedinrevisedform9April2003;publishedonline7June2003)
Thestudydevelopedanimageprocessingmethodtodeterminethetraveldirectrixforamicroweedingrobotinapaddy eld.Theprocessingsamples,whichincluded24imagesineachsample,wereselectedfromthevideotapeswhichwereobtainedonaweeklybasis,whenthecameramanuallyrevolved3608eighttimesateachheightandanglepositioninthespacebetweenthericerowsfromthethirddayaftertransplantingto7weeks.Thetargetimagewasabstractedfromthe24imagesbyanalysingthedistributionofbluepixelsinthecolourimageandthedistributionofblackpixelsinitsbinaryimage.Thecandidatepointsforthedirectrixlineinthetargetimagewereobtainedbyanalysingeachhorizontallinepro leofitsbinaryimageortheblueimageaccordingtothelevelofgrowthinthepaddy eld.Thetraveldirectrixlinewasdetectedbypassingaknown-pointHoughtransform.Thedirectrixlinesofall69samplesusedinthestudywerecorrectlydetected.Theprocessingtimesrequiredtodrawthedirectrixlineafterreadingthe24imageswereabout0Á4–0Á8s.
#2003SilsoeResearchInstitute.AllrightsreservedPublishedbyElsevierScienceLtd
1.Introduction
RiceisthemainfoodoftheJapanese.Soricefarminghasanimportantsigni canceinJapan.Theagriculturalmachinesforricefarming,including eldcultivating,ricetransplanting,ricegrowthmanagementandriceharvesting,areapproachingcurrentdesignoptimums.Futureresearchisnowaimedatimprovedautomation,e.g.theuseofrobots.Developmentprojectshaverecentlyproducedvariousinnovations:Yukumotoetal.(1998a,1998b,1998c)developedatillingrobotguidedbyapositionsensingsystem(PSS)andageomagneticdirectrixsensor(GDS),Nagasakaetal.(1999)developedanautonomoustransplanterusingareal-timekinematicglobalpositionsystem(RTKGPS),Chosaetal.(2000)developedanautomaticpaddy eldmanagementmachine,whichtravelsalongapreparedguidancecable,Iidaetal.(1999a,1999b)andMatsuuraetal.(2001)developedanautonomousfollow-upvehicleguidancesystemsothatoneortwoharvesterswereabletofollowamanuallydrivencombineharvester,auto-matically.
Inpreviousstudies,ariceseedlingrowandpaddy eldridgedetectionsystem(RRDS),whichguidedan
1537-5110/03/$30.00
automaticricetransplanter(Chenetal.,1997,1998,1999a,1999b;Watanabeetal.,1997),andatravelroutedetectionmethod(TRDM),whichguidedanautomatedmanagementmachineinpaddy elds(Chenetal.,2002),weredevelopedusingimageprocessing.Forreducingtheenvironmentalimpactfromherbicideutilisation,theresearchaboutweeddetectionbyimageprocessinginthe eldincreasedinrecentyears(Burksetal.,2000;Ei-Fakietal.,2000;Tianetal.,1999).Thesestudieswereaimedatsprayingtheherbicideondetectedweedorcropareastoreducetheherbicideutilisation.However,ifamicrorobotcouldbedevelopedtotravelalongthecroprows,thenweedingcouldbecompletedbymechanicalmeansratherthanwithherbicides.Somestudiesonamicroweedingrobotinapaddy eldhavebeenreported(Sekietal.,1998,1999,2000;Hayashietal.,2000).However,thesestudiesfocusedontheeffectofweedinganddidnotreportaneffectiveguidancemethod.
Otherthanimageprocessing,alaserlightsensor,ultrasonicsensor,orinfraredsensorcanbeusedtosensethedistancefromthesensortoanobject.Amongthesesensors,theinfraredsensoristheleastexpensive(aboutUS$2persensor)andcanbeusedforneardistance
393
#2003SilsoeResearchInstitute.Allrightsreserved
PublishedbyElsevierScienceLtd
机器人、控制、系统
内容需要下载文档才能查看394
B.CHENETAL.
sensing,therebymakingitsuitableforamicroweedingrobottravellingbetweenthericerows,withaninter-rowspacingof30cm,butitispoorinsunlight.Theothersensors,effectiveoveradistanceof20cm,areunsuitableforusebetweenrows.Further,theultrasonicsensorisnoteffectiveforusewithsmallriceseedlings.Therefore,thisstudyisaimedatdevelopinganimageprocessingmethodtoguideamicroweedingrobotinapaddy eld.Furthermore,the eldtrialsforthisstudyarecarriedoutwithplantsatlatergrowthstagesthanintheRRDSandTRDMstudies.Therobottravelsintothetunnelbetweenthericerows,andtheimageswerecompletelydifferentfromthoseofpreviousstudieswhentherobotsensorrevolved.Owingtotheagilityofthesmallbodyoftherobot,theorientationoftherobotcouldbechangedeasilytoreceivedifferentimagesintheroboteye.Therefore,itnecessarytoredeterminethetraveldirectrixafterstoppingforweedingwork.
Withtheseconditionsinmind,theobjectivesofthepresentstudyweretodevelopanimageprocessingdetectionalgorithmfordeterminingthetraveldirectrix
whenthemicroweedingrobotisrevolvinginthepaddy eld.Thealgorithmhadtobeeffectiveinvariousorientationsofthemicroweedingrobotapplicabletodrivingduringtheentiregrowingperiodfromtheplantingofriceseedlingstotheharvesting.
2.Equipmentandsampling2.1.Equipment
Todevelopamachinevisionsystemthatdoesnotneedcostlyequipment,aninexpensivemacrocameraset,aTR-89CwirelesssurveillancecameraandaTR-801Creceiver,withatotalcostofaboutUS$350inJapan,wereusedtosamplethevideoimagesinthepaddy eld.Atelevisionsetwasusedtoreceivethesignalviathereceiver,andstorethevideoimagesinvideotape.Thecamerahada63mmmetricchargecoupleddevice(CCD)imagesensorwith250000pixelsineffect.TheimagesignalinNationalTelevisionSystemsCommittee(NTSC)formatoutputtedbyaterminalwithavoltage
机器人、控制、系统
内容需要下载文档才能查看MACHINEVISIONFORMICROWEEDINGROBOT
395
of1Vandaresistanceof75O.Thefocallengthofthecameralenswas3Á7mmandtheaperturesettingwasf2Á0.Thelowestintensityoftheimagedobjectwas2l.Thefrequencyofthetransmittedimagewas2Á4GHz.Thecamerasizeswere32mminwidth,27mminheight,and68mminlength(CoronaElectronic,Inc.).
TheimagesforprocessingwerecapturedusingaFDM-PCIIIimagedigitiserboardprovidedbyPho-tron,Inc.Imageprocessingwasperformedusingapersonalcomputerwithapentium400MHzcentralprocessingunit(CPU).Processingsoftwarewasdevel-opedusingMicrosoftVisualC++6.0.2.2.Imageprocessingsampling
Transplantingofthericeseedlingswasperformedon13June2001,attheexperimentalfarmofTokyoUniversityofAgricultureandTechnology.Samplingoperationswereperformedfrom16Juneto4August2001onaweeklybasis,givingatotalofeightsampleperiods.Thecamerawaspositionedapproximately10,20,and30cmabovethesurfaceofthewaterandwaspositionedapproximatelyhorizontal,facing10and208downwardfromthehorizontalateachheightposition.Videotapesampleswereobtainedwhenthecamerawasmanuallyrevolved3608ateachheightandangleposition(Fig.1).Duringthesamplingperiod,thericeheightwasapproximately10–65cmabovethewatersurface.
Atotalof69processingsampleswereobtained.Eachprocessingsamplehad24images,whichwerecapturedfromthevideotapesamplesapproximatelyatevenintervalsandsavedinvideo leformat.Twoparametersoftheimageinputboard,brightnessandcontrast,werebothestablishedasthemediumvaluewhilesamplingthe
Fig.1.Paddy eldandcamera
images.Theimagesizewas512by480pixels(seeFig.4).Theprocessingsamplesweregivenanidenti cationcode:Smn(S,samplenumber;m,weeknumber(0–7);n,videotapenumber(1–9))(Table1).
3.Detectingalgorithm
Avideo le,whichincluded24images,wasreadinto24framesofthecomputermemorytopreparethedetectingprocessing.Whentheprocessingwasstarted,theparameters,suchasprocessingframeF,maximumblueparametervalueBpm,max,maximumobjectnumberNO,max,maximumarearate1AR1,max,maximumarearate2AR2,max,judgedframeFJandcandidateframe1FC1,wereinitialisedasF51,Bpm,max50,NO,max50,AR1,max50,AR2,max50,FJ5À1andFC15À1,respec-tively(Fig.2).Theimageswerethenprocessedfromframe1toframe24,framebyframe,todeterminetheimagewherethespacebetweenthericerowswasnearestthecentreoftheimage(calledthetargetimage).Afterprocessingtodeterminethetargetimage,candidatepointsoftraveldirectrixweredetectedoneachhorizontallineinthetargetimage.Thetraveldirectrixwasthendetectedbythemethodcalled‘passingaknownpointHoughtransform(PKPHT)’(Chenetal.,1997),whichestablishedaknownpoint,andthetraveldirectrixisassumedfromthemaximumnumberofcollineardetectedcandidatepointspassingtheknownpoint.3.1.Determiningtargetimage
3.1.1.Makingthebluevaluedistributionandcalculatingtheblueparameter
Thetargetimagewasthatofthespacebetweenthericerowsnearestthecentreoftheimageinthefullimagescapturedwhenthecamerawasrevolving.Thus,thecentreofthebluedistributioninthetargetimagewasnearestthecentreoftheimageinthefullimages.Therefore,ablueparameterBpmcouldbeestablishedtojudgethetargetimage.
Whenanimagewasprocessed, rst,foreachverticalline,eachpixelbluevaluewassummedtoobtainthebluedistributiongraphb(x)wherexistheco-ordinate
ontheabscissaoftheimage.Themeanb
%,andstandarddeviationSdbofb(x)werecalculated,respectively,usingthefollowingequations
511b%51X512bðxÞð1Þ
x50
r S1db5X511À512
x50b%
ÀbðxÞÁ2
ð2Þ
机器人、控制、系统
396
B.CHENETAL.
Table1
Samplingconditions
Week
Date(2001)
Riceheight,cm
Weather
Cameraheight,cm
Sampleimageidenti ers*
Cameraangle,deg0
16Jun
10
Cloudy
102030102030102030102030102030102030102030102030
S01}}S11S14S17S21S24S27S31S34S37S41S44S47S51S54S57S61S64S67S71S74S77
10S02S05S08S12S15S18S22S25S28S32S35S38S42S45S48S52S55S58S62S65S68S72S75S78
20}S06S09S13S16S19S23S26S29S33S36S39S43S46S49S53S56S59S63S66S69S73S76S79
122Jun12Cloudy
229Jun20Sunny
306Jul25Cloudy
413Jul30Sunny
519Jul40Sunny
627Jul55Sunny
704Aug65Cloudy
Note:transplantingwasperformedon13Jun2001.*
Sampleimageidenti ers:Smn–S,samplenumber;m,weeknumber(0–7);n,videotapenumber(1–9);‘}’,nosample.
Next,thedataweresmoothedbyaveragingoveragroupof20pixelswidth,movingacrosstheoriginaldatapixelbypixel,andthedistributionb(x)wasevaluatedasbelowtoobtaintheblueparameterBpm.ThehighestpointP,whoseco-ordinatewasxP,wassoughtonthedistributionb(x)(Fig.3).Ifb(xP)>bu,wherebuistheupperboundoftotalblueintensityequal%þSdb,theminimumpointsonbothsidesofPweretob
searchedabovethatvaluebu,andthepoint,whichwasthehighestoftheminimumpoints,wasnamedp1,whoseco-ordinatewasxp1.Theintersectionbetweenthedistributionb(x)andthebluevalueatp1ontheoppositesideofPwasnamedp2,whoseco-ordinatewasxp2.IftherewasnominimumpointoneithersideofPabovetheupperboundoftotalblueintensitybu,thetwointersectionsbetweenthedistributionb(x)andbuonbothsidesofPwereusedasp1andp2.Theblue
parameterBpmwasobtainedusingEqn(3)when512/2ÀxP¼0orEqn(4)when256ÀxP50.Otherwise,ifb(xP)4buwastrue,Bpmwas xedas0.ThenumberofmaximumpeakpointsNP,abovethelinebu,wasalsoobtainedwhensearchingforthehighestblueintensitypointP:
Á2Pxp2À
bðxÞÀbðxÞp1xp1
Bpm5256Àxp¼0ð3Þ
j256Àxpj
Bpm5
xp2XÀxp1
Á2
bðxÞÀbðxp1Þ;
256Àxp50ð4Þ
IfthecalculatedvalueoftheblueparameterBpmexceededthecurrentmaximumvalueBpm,max,thenitreplacedthevalue,Bpm,max5Bpm,andtheprocesswastakentothenextstep(Fig.2).
机器人、控制、系统
内容需要下载文档才能查看MACHINEVISIONFORMICROWEEDINGROBOT
397
%,meanpixelblueFig.2.Flowchartfordetectingdirection:AR,arearate;AR1,max,AR2,max,maximumarearates1and2;b
intensity;Bpm,blueparameter;Bpm,max,maximumblueparameter;F,processingframe;FC1,FC2,candidateframenumbers1–2;FJ,judgedframe;LR,linerate;NO,max,maximumobjectnumber;NO,objectnumber;NP,numberofpeaks;Sdb,standarddeviationof
bluedistribution
3.1.2.Judgingthebinaryimage
Owingtothein uenceofre ectedlight,themaximumvalueforBpm,maxmaynotbelongtothetargetimage;therefore,theimagewiththemaximumvalueforBpm,maxhastobecheckedbyotherconditionstoascertainthatitisthetargetimage.
Iftheimagepassedtheabovestep,thebinaryimagewasthenjudged.ThebinaryimagewasobtainedbycomparingtheblueintensityB,andthegreenintensityGofeachpixel.IfG>Bwastruethepixelwas xedas255(white,representingriceplants);forotherconditionsthepixelwas xedas0(black,representingwater).Atrapezium,sized64(5512/8)pixelsatthetopand256(5512/2)pixelsatthebottom(eachhorizontallinelengthwas64+y(256-64)/480pixels,whereyistheordinateoftheimagefrom0to479),centredatthepositionwithco-ordinatexP(Fig.4),wasestablishedonthebinaryimagetocountthenumberofblackpixels,whichwascalledtheobjectnumberNO.ThearearateARandthelinerateLR(Fig.2)werethencalculatedinthetrapeziumarea.ThevalueforARwasobtainedbydividingthenumberofobjectsNObythetotalpixelsinthetrapeziumarea.ThevalueforLRwasobtainedbydividingh,thenumberoflinescontaining55%blackpixelsatthetopoftheimageinthetrapeziumarea,by480,theimageheight(Fig.4).AftercountingtheobjectnumberNO,calculatingthearearateARandthelinerateLR,thesedatawerecheckedinordertodecidesubsequentprocessing.IfallofthecriteriaNO>NO,max,
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- (精选文档)烟气换热器GGH防腐论文
- 大型风力发电设备防腐技术及质量控制
- 《电力行业保温防腐工程能力资格管理办法(2011版)》
- 投标用钢结构车间工程施工组织设计(含土建)
- [学士论文]某72米双跨钢结构厂房毕业设计计算书
- T形钢管混凝土柱与钢梁外伸端板连接节点抗震性能试验
- 2009年重防腐涂料的涂装与发展
- 天津大港烟囱防腐保温工程
- 乙烯基树脂防腐地坪施工方案及报价1
- 强腐蚀复杂小型油气田综合防腐技术
- 北京某厂房的钢结构工程(中建某公司钢结构部分方案 附三维图)
- 碳钢表面复合涂层的制备及在海水中的防腐性能研究
- 轻型钢结构项目可行性研究报告-范兆文-18810044308范文格式(专业经典案例)
- [能源/化工]4_石油化工设备的防腐措施
- 海洋环境用防腐防污纳米涂料的研究
- 甲醇工程防腐施工方案
- X100超高强钢管环氧粉末防腐层现场探索性试验
- 滨海公路防腐混凝土作业指导书.pdf
- 3PE防腐钢管
- 防腐钢管生产技术
- 钢结构防腐方案
- 以管道防腐为例浅谈防腐材料技术的新发展
- 钢结构防腐系统知识
- 钢结构防腐施工方案改10-8-3
- 加拿大防腐标准(最新整理By阿拉蕾)
- 劳动定额第十二册保温防腐工程
- 3503-J111底板防腐隐蔽
- 钢结构水性带锈防腐涂料的试验研究
- 氧煤沥青加强级防腐施工方案
- 一本钢结构设计原理教案
网友关注视频
- 冀教版英语五年级下册第二课课程解读
- 冀教版小学英语四年级下册Lesson2授课视频
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
- 人教版二年级下册数学
- 冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
- 3月2日小学二年级数学下册(数一数)
- 第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 冀教版小学数学二年级下册1
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 人教版历史八年级下册第一课《中华人民共和国成立》
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
- 苏科版数学七年级下册7.2《探索平行线的性质》
- 三年级英语单词记忆下册(沪教版)第一二单元复习
- 30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
- 六年级英语下册上海牛津版教材讲解 U1单词
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
- 外研版英语七年级下册module3 unit2第一课时
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 外研版英语七年级下册module3 unit1第二课时
- 冀教版小学数学二年级下册第二单元《余数和除数的关系》
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 北师大版小学数学四年级下册第15课小数乘小数一
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理