教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> > 数学> 与时间序列相关的STATA_命令及其统计量的解析

与时间序列相关的STATA_命令及其统计量的解析

上传者:姜恩华
|
上传时间:2015-05-07
|
次下载

与时间序列相关的STATA_命令及其统计量的解析

与时间序列相关的STATA 命令及其统计量的解析

残差U 序列相关:

①DW 统计量——针对一阶自相关的(高阶无效)

STATA 命令:

1.先回归

2.直接输入dwstat

统计量如何看:查表

②Q 统计量——针对高阶自相关correlogram-Q-statistics

STATA 命令:

1. 先回归reg

2. 取出残差predict u,residual(不要忘记逗号)

3. wntestq u Q

统计量如何看:p 值越小(越接近0)Q 值越大 ——表示存在自相关

具体自相关的阶数可以看自相关系数图和偏相关系数图:

STATA 命令:

自相关系数图:

ac u( 残差) 或者窗口操作在 Graphics ——Time-series graphs —— correlogram(ac) 偏相关系数图:

pac u 或者窗口操作在Graphics——Time-series graphs—— (pac)

自相关与偏相关系数以及Q 统计量同时表示出来的方法:

corrgram u 或者是窗口操作在

Statistics——Time-series——Graphs—— Autocorrelations&Partial autocorrelations

③LM 统计量——针对高阶自相关

STATA 命令:

1. 先回归reg

2. 直接输入命令 estate bgodfrey,lags(n) 或者窗口操作

在 Statistics— —Postestimation(倒数第二个)——Reports and Statistics(倒数第二个) ——在里面选择 Breush-Godfrey LM(当然你在里面还可以找到方差膨胀因子还有DW 统计量等常规统计量)

LM 统计量如何看:

P 值越小(越接近 0)表示越显著(显著拒绝原假设),存在序列相关

具体是几阶序列相关,你可以把滞后期写为几,当然默认是 1,(通常的方法是先看图,上面说的自相关和偏相关图以及Q 值,然后再利用LM 肯定)。

平稳时间序列存在自相关的问题的解决方案

残差出现序列相关的补救措施:

1、一阶自相关 :

最近简单的方法是用AR(1)模型补救,就是在加一个残差的滞后项即可。

2、高阶的自相关:

用AR(n)模型补救。

1

AR 模型的识别与最高阶数的确定:

可通过自相关系数来获得一些有关 AR(p) 模型的信息,如低阶 AR(p) 模型系数符号的信息。但是,对于自回归过程AR(p),自相关系数并不能帮助我们确定 AR(p) 模型的阶数 p。所以,可以考虑使用偏自相关系数?k,k,以便更加全面的描述自相关过程AR(p)的统计特征。

且对于一个AR(p) 模型,?k,k 的最高阶数为p,也即AR(p) 模型的偏自相关系数是 p 阶截尾的。因此,可以通过识别AR(p)模型的偏自相关系数的个数,来确定 AR(p) 模型的阶数 p,进而设定正确的模型形式,并通过具体的估计方法估计出AR(p) 模型的参数。

如果AR(p)还解决不了则进一步使用:MA(q)模型,以及ARMA(p,q)模型 。

1、MA(q)

MA(q) 的偏自相关系数的具体形式随着 q 的增加变得越来越复杂,很难给出一个关于 q 的一般表达式,但是,一个MA(q) 模型对应于一个AR(∞) 模型。因此,MA(q) 模型的偏自相关系数一定呈现出某种衰减的形式是拖尾的。故可以通过识别一个序列的偏自相关系数的拖尾形式,大致确定它应该服从一个MA(q) 过程。

2、ARMA(p,q)就是既含有AR 项又含有MA 项。

我们引入了自相关系数和偏自相关系数这两个统计量来识别 ARMA(p,q) 模型的系数特点和模型的阶数。但是,在实际操作中,自相关系数和偏自相关系数是通过要识别序列的样本数据估计出来的,并且随着抽样的不同而不同,其估计值只能同理论上的大致趋势保持一致,并不能精确的相同。因此,在实际的模型识别中,自相关系数和偏自相关系数只能作为模型识别过程中的一个参考,并不能通过它们准确的识别模型的具体形式。具体的模型形式,还要通过自相关和偏自相关系数给出的信息,经过反复的试验及检验,最终挑选出各项统计指标均符合要求的模型形式。

注:无论采取什么样的方式,只要能够把残差中的序列相关消除掉,又不会引入新的问题,这样的模型就是最优模型。

与平稳性检验相关的STATA命令及其统计量解析(P212 张晓峒)

白噪声检验:

1. Q 检验 wntestq var,lag(n)

2.Bartlett 检验 wntestb var ,table(表示结果以列显示,而不做图。不加 table 就以图形的方式现实)

或者在Statistics——Time-series——TEST——Bartlett 检验(第四个)

画密度图:

1、 概率密度图

命令:pergram var ,generate(新变量名字) 将概率密度的图上所生成的值生成并储存在新变量里,这个不是必须的,只是为了日后方便。

窗口:Statistics——Time-series——Graphs——Periodogram(第五个)

2. 累积分布函数图

命令:cumsp var ,generate(新变量名字) 解释同上,并且这个生成新变量的功能似乎只能通过命令完成。

窗口:Statistics——Time-series——Graphs——Cumulative Spectral distribution

单位根检验(219)

2

1、 Dickey-Fuller 检验

命令:dfuller var (,lags(#)/trend/noconstant/regress/)

对变量做ADF 检验可以加滞后期或趋势项或不含常数项等等这些取决于你的模型。

窗口:Statistics——Time-series——TEST——ADF 单位根检验(第一个)在里面你也可以选择滞后期数,常数项等等。

如何看结果:

原假设为:至少存在一个单位根;备选假设为:序列不存在单位根。

如果统计量小于后面的显著性水平给出的值且P 值很大——有单位;

如果统计量大于后面的显著性水平给出的值且 P 值很小——无单位根

ADF 检验需要注意的地方:

(1)必须为回归定义合理的滞后阶数,通常采用AIC 准则来确定给定时间序列模型的滞后阶数。在实际应用中,还需要兼顾其他的因素,如系统的稳定性、模型的拟合优度等。

(2)可以选择常数和线性时间趋势,选择哪种形式很重要,因为检验显著性水平的 t 统计量在原假设下的渐进分布依赖于关于这些项的定义。

① 如果在检验回归中含有常数,意味着所检验的序列的均值不为 0,一个简单易行的办法是画出检验序列的曲线图,通过图形观察原序列是否在一个偏离 0 的位臵随机变动,进而决定是否在检验时添加常数项;

② 如果在检验回归中含线性趋势项,意味着原序列具有时间趋势。同样,决定是否在检验中添加时间趋势项,也可以通过画出原序列的曲线图来观察。如果图形中大致显示了被检验序列的波动趋势随时间变化而变化,那么便可以添加时间趋势项。

2、Phillips-Perron 检验

命令:pperron var , (,lags(#)/trend/noconstant/regress/)对变量做 PP 检验可以加滞后期或趋势项或不含常数项等等这些取决于你的模型。

窗口操作:Statistics——Time-series——TEST——PP 单位根检验(第三个)

如何看结果:

同ADF 一样 原假设为:至少存在一个单位根;备选假设为:序列不存在单位根。 P 值越小(统计量大于各显著性水平值)——不存在单位根

P 值越大(统计量小于各显著性水平值)——存在单位根

向量自相关回归VAR 模型

向量自回归(VAR)模型是AR 模型的多元扩展,用以反映在一个系统中的多个变量之间的动态影像,格兰杰因果检验、脉冲响应、方差分解都是 VAR 模型中重要的分析工具。

与VAR 模型相关的STATA 命令与解析

1、 VAR 模型的估计

STATA 命令:

var 解释变量 (,无常数项noconstant/滞后期lags(n)/ 外生变量exog(varlist)/constraints(numlist)线性约束的个数

{注意:使用线性约束要提前定义,详情见建模中的各种小问题}/LIKEPOHL 滞后阶数选择的统计量lutstats)

窗口操作:Statistics——Multivariate time series——VAR(第二项)

如何看结果:

3

保存估计结果的命令:est store 名称

2. VAR 模型平稳性

STATA 命令:varstable(,graph 表示画出图形)

如何看结果:特征值都在圆内,即都小于1,表示VAR 模型稳定

窗口操作:Statistics ——Multivariate time series ——VAR diagnostics and tests——check stability condition of VAR estimates

3. VAR 阶数的选择——滞后阶数的确定

在VAR 模型中,正确的选择模型的滞后阶数,对于模型的估计和协整检验都产生一定的影响,小样本情况更是如此。

(1)STATA 命令:用于VAR 模型估计之前

varsoc 解释变量(,没有常数项noconstant/最高滞后 期 maxlag(#)/ 外 生 变 量 exog(varlist)/ 线 性 约 束 条 件 constraints(numlist))

(2)命令:用于模型估计之后

解释变量(,estimates(estname)) 其中,estname 表示已经估计的VAR 模型的名字。

(1)(2)如何看结果:找最显著的阶数作为其滞后项(一般会标有 ※)

(3)命令:用于模型估计之后(Wald 滞后排除约束检验) Varwle

窗口操作:Statistics——Multivariate time series——VAR diagnostics and tests——第一第二项 如何看结果:看不同阶数上的联合显著性,看P 值,越小越显著,表示存在该阶滞后项。

4. 残差的正态性与自相关检验

STATA 命令:

1. 先进行var 回归

2. varnorm

如何看结果:

原假设是服从正态分布

P 值越小越显著拒绝原假设——不服从正态分布

P 值越大越不显著拒绝,原假设成立——服从正态分布

自相关:窗口操作:Statistics——Multivariate time series—— VAR diagnostics and tests——LM Test

正态分布:窗口操作:Statistics——Multivariate time series ——VAR diagnostics and tests——Test for normally(倒数第三项)

5. Granger 因果关系检验

格兰杰因果关系不同于我们平常意义上的因果关系,它是指一个变量对于另外一个变量具有延期影响。

格兰杰因果关系检验有助于表明变量间的动态影响,有助于提高模型的预测效果。 命令格式:

1. 先进行var

2. 再进行格兰杰因果检验vargranger

如何看结果:看P 值的显著性,越小说明存在越强的因果关系,相反 P 值越大说明两者的因果关系不明显。

4

窗口操作:Statistics——Multivariate time series——Granger causality test

6.脉冲响应与方差分解(223)

脉冲响应与方差分解是一个问题的两个方面。

脉冲响应是衡量模型中的内生变量对一个变量的脉冲(冲击)做出的响应{一对多,一个变 量向下所引起的其他变量的变动},而方差分解则是如何将一个变量的响应分解到模型中的内生变量{多对一,一个变量的变动向上追溯引起该变动的若干原因}。

STATA 的irf 命令用于计算VAR、SVAR、VEC 模型的脉冲响应、动态乘子和方差分解。 注意:该方法的操作使用于var、svar、vec 估计之后。

(1) 创建irf 文件

STATA 命令:irf create irfname ,set(名字) (先进行var, 然后使用这条命令就可以直接把刚刚 var 的结果保存到该 irf 文件里,并且只有这条命令是最好用的,其他命令即使可以建立irf 文件但是不能把var 的结果保存进去,那也是没用的。) 激活irf 文件

①显示当前处于活动状态的irf 文件:

STATA 命令: irf set

②激活(或创建)irf 文件:

STATA 命令:irf set 文件名称

③创建新的irf 文件并替换正在活动的irf 文件:

STATA 命令: irf set 文件名称 ,replace

④清除所有活动的irf 文件:

STATA 命令: irf set ,clear

窗口操作:Statistics——Multivariate time series——Manage IRF results and files

(2) 用irf 文件作图(223)

对于VAR、SVAR、VEC 模型,脉冲响应函数(IRF)的类型包括简单脉冲响应、正交脉冲响应、动态乘子三种,方差分解包括 Cholesky 分解和结构分解两种。没种模型可以采用不同的分析工具。

窗口操作:Statistics——Multivariate time series——IRF and FEVD analysis

? 简单的IRF:(VAR/SVAR/VEC 之后)

命令:irf graph irf(,使用哪个文件 set(文件名)/ 脉冲变量 impulse(变量名)/响应变量response(内生变量名))如果不加约束就是默认当前打开的文件

? 动态乘子:(VAR 之后) 命令:irf graph dm(,使用哪个文件 set(文件名)/ 脉冲变量

impulse(变量名)/响应变量response(内生变量名))

? 方差分解:(VAR/SVAR/VEC 之后)

命令:irf graph fevd(,使用哪个文件set(文件名)/ 脉冲变量 impulse(变量名)/响应变量response(内生变量名))

联合图表:将多个脉冲响应图或方差分解图结合起来)

命令:irf cgraph (irfname 脉冲变量 响应变量 方差分解的方法 fevd/IRF 的方法 irf) (irfname 脉冲变量 响应变量 IRF 方法 irf/方差分解的方法fevd)

叠加图表:(将多个脉冲响应图或方差分解图叠加起来)

命令:irf ograph(irfname 脉冲变量 响应变量 方差分解的方法 fevd/IRF 的方法 irf) (irfname

5

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

2013江苏公务员考试行测(A类)真题
2012年421公务员考试申论试题答案及解析
2012年江苏公务员面试全真模拟试题三
2013江苏省公务员考试申论深度解读
江苏省历年公务员面试热点真题回顾
2013江苏省公务员考试行测真题答案及解析(C类)
2013年江苏公务员面试全真模拟(二)
2012年江苏公务员面试全真模拟试题(二)答案
2012江苏省公务员考试《行政职业能力测验》C类部分真题答案及解析
2012江苏省公务员考试《行政职业能力测验》A类部分真题答案及解析
【情景模拟】现场模拟与老同志的工作交流沟通
2012年江苏公务员面试全真模拟试题四
2013江苏公务员考试行测C类真题答案解析
2012年江苏省公务员面试真题(4.22)
2012江苏省公务员考试《行政职业能力测验》B类部分真题答案及解析
2013江苏省公务员考试申论真题整体特点分析
【情景模拟】居民楼起火,死亡5人,受伤20多人,居民损失惨重,给予责任人处罚以及补偿,你怎么做?
2013江苏省公务员考试行测真题呈现六大特点
2012江苏公务员面试观点理解题模拟:如何看待雷锋精神
2013江苏公务员考试公共基础知识(B类)真题
【情景模拟】你是甲校校长,到乙校开家长会,乙校校长要你作为家长代表发言。请现场模拟一下。
江苏公务员考试每日一面:新颖题之现场模拟(5月29日)
2013江苏公务员考试公共基础知识(C类)真题
再回首:2011年424公务员考试申论真题实录
【情景模拟】一项工作要另一部门同时配合,但是不配合,现场模拟一下怎么说服他。
2012江苏公务员面试漫画题模拟:小微企业的救赎
2013江苏省公务员考试行测C类真题深度解读:新题型首次出现
2013江苏公务员考试行测B类真题答案解析
2012年江苏省公务员面试真题(4.21)
2013江苏省公务员考试行测真题答案及解析(B类)

网友关注视频

北师大版数学四年级下册第三单元第四节街心广场
沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
冀教版英语三年级下册第二课
飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
六年级英语下册上海牛津版教材讲解 U1单词
二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
七年级英语下册 上海牛津版 Unit5
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
外研版英语三起5年级下册(14版)Module3 Unit2
冀教版英语五年级下册第二课课程解读
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
冀教版小学英语五年级下册lesson2教学视频(2)
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
外研版英语七年级下册module3 unit2第一课时
冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
外研版英语七年级下册module1unit3名词性物主代词讲解
沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
沪教版八年级下册数学练习册21.3(2)分式方程P15
二年级下册数学第三课 搭一搭⚖⚖
外研版八年级英语下学期 Module3