教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> > 化学> Filler–elastomer interactio

Filler–elastomer interactio

上传者:崔琼瑶
|
上传时间:2015-05-10
|
次下载

Filler–elastomer interactio

内容需要下载文档才能查看 内容需要下载文档才能查看

JournalofColloidandInterfaceScience267(2003)

内容需要下载文档才能查看

86–91

http://wendang.chazidian.com/locate/jcis

Filler–elastomerinteractions:in?uenceofsilanecouplingagentoncrosslinkdensityandthermalstabilityofsilica/rubbercomposites

Soo-JinPark?andKi-SookCho

AdvancedMaterialsDivision,KoreaResearchInstituteofChemicalTechnology,P.O.Box107,Yusong,Taejon305-600,SouthKorea

Received29October2002;accepted31January2003

Abstract

Inthiswork,thecrosslinkdensityandthermalstabilityofthesilica/rubbercompositestreatedbysilanecouplingagents,i.e.,γ-aminopropyltriethoxysilane(APS),γ-chloropropyltrimethoxysilane(CPS),andγ-methacryloxypropyltrimethoxysilane(MPS),wereinvestigated.Thechemicalstructuresofmodi?edsilicaswerestudiedintermofsolid-state29SiNMRspectroscopy.Thecrosslinkdensityofthecompositeswasdeterminedbyswellingmeasurement.Thedevelopmentoforganicfunctionalgroupsonsilicasurfacestreatedbycouplingagentsledtoanincreaseinthecrosslinkdensityofthecomposites,resultinginincreasing?nalthermalstabilityofthecomposites.ThecompositestreatedbyMPSshowedthesuperiorcrosslinkdensityandthermalstabilityinthesesystems.Theresultscouldbeexplainedbythefactthattheorganicfunctionalgroupsofsilicasurfacesbysilanesurfacetreatmentsledtoanincreaseoftheadhesionatinterfacesbetweensilicasandtherubbermatrix.?2003ElsevierInc.Allrightsreserved.

Keywords:Silica;Silanecouplingagent;Crosslinkdensity;Thermalstability

1.Introduction

Commercialapplicationsofelastomersoftenrequiretheuseofparticulate?llerstoobtainthedesiredreinforcement.Intherubberindustry,besidescarbonblacks,silicasaretheotherreinforcing?llerusedtoimpartspeci?cpropertiestorubbercompounds[1].Itiswellknownthatcarbon-black-?lledrubbercompositeshavemultiphasesystemsdependingonthemobilityofrubbermolecules,whichin?uencethereinforcementofthecomposites.Extensiveworkhasalsobeencarriedoutonstructuraldevelopmentinsilica/rubbercomposites[2,3].

Thesurfacefunctionalenvironmentofsilicaparticlesisquitedifferentfromthatofcarbonblacksduetotheexis-tenceofsilanolgroupsintheparticles.Thus,theprimarydiscussiononthestructuraldevelopmentinthesilica/rubbersystemsisfocusedontheinteractionsbetweensilicaparti-clesandrubbermolecules[4,5].WolffandWang[6]studiedtheeffectsofsurfaceenergiesof?llersonrubberreinforce-mentandreportedthatthesurfaceenergeticsofsilicasarecharacterizedbyalowLondondispersivecomponentanda

*Correspondingauthor.

E-mailaddress:psjin@krict.re.kr(S.-J.Park).

0021-9797/$–seefrontmatter?2003ElsevierInc.Allrightsreserved.doi:10.1016/S0021-9797(03)00132-2

highpolarcomponent.Thehighpolarcomponentleadstostronginteractionsamongsilicaparticles;ontheotherhand,thelowLondondispersivecomponentcausesweak?ller–rubberinteractions,leadingtothelowmoduliofthevulcan-izateatahighelongation.Therefore,surfacetreatmentsareneededtoimprovethereinforcementofthecompositesbyincreasingtheLondondispersivecomponentofsurfaceen-ergetics[7–9].

Variousmethodsusedtomodifythesurfacepropertiesofthesilicasarelargelyintroducedintermsofthermal,chemical,electrochemical,andcouplingagenttreatments.Amongthem,silanecouplingagentshavebeenusedintherubberindustrytoimprovetheperformanceofsilicasandothermineral?llersinrubbercompounds.Asilanecouplingagentcontainsfunctionalgroupsthatcanreactwiththerubberandthesilicas.Inthisway,therubber–silicaadhesionisincreasedandconsequentlythereinforcingeffectofthesilicasisenhanced[10,11].

Ingeneral,crosslinkdensityofrubbercompositesisoneoftheimportantpropertiesofthermosetsandgenerallyrestrictsthedegreeofswellinginpolymer.Ahighdegreeofcrosslinkdensityindicatesthattherubberisnotsuitableforuseinthatenvironment.Socorrelationsofmechanical

S.-J.Park,K.-S.Cho/JournalofColloidandInterfaceScience267(2003)86–9187

behaviorandthermalstabilitywithcrosslinkdensityhavebeeninvestigated[12–15].

Inthelightofthesestudies,weinvestigatethechangesincrosslinkdensityofsilica/rubbercompositesfromdifferentsilanecouplingagenttreatments.Mechanicalinterfacialpropertiesandthermalstabilityofthecompositesarealsostudiedasfunctionsofcrosslinkdensity.

2.Experimental

2.1.Materialsandsamplepreparation

Virginalsilicas,denotedasVS(productname:VN3),weresuppliedbyDegussaCo.ThesamplesdenotedbyAPS,CPS,andMPSwerepreparedinVStreatedwithsilanecouplingagents,respectively,γ-aminopropyltriethoxysi-lane(APS),γ-chloropropyltrimethoxysilane(CPS),andγ-methacryloxypropyltrimethoxysilane(MPS).Silanecou-plingagentsweresuppliedbyShinetsuCo.

Forthepresentinvestigation,allofthesilanecouplingagentsstudiedwerepreparedunderconstantconditionsinordertotreatsilicasurfaces.Inthesesolutions,acosolventofmethanol(95wt%intotalsolvent)anddistilledwater(5wt%intotalsolvent)wasused,andthesilaneconcen-trationwas?xedat0.4wt%[3].Afterthesilanecouplingagentswerehydrolyzedfor1hwithaceticacidsolution,vir-ginalsilicasweredippedinthehydrolyzedsilanesolutionfor1handdriedat120?Cfor3h.Rubber(productnameSBR1500S;styrenecontent23.5%)obtainedfromKoreaKumhoPetrochemicalCo.wasusedinthisstudy.Disper-siveagent(productnameEF44;compositionblendoffattyacidderivatives;zinecontent8.5%;density1070g/cm3),wassuppliedbyStruktolCo.Thecompoundingformula-tionswerelistedinTable1.Forthemeasurementofmechan-icalpropertiesof?lledvulcanizedsamples,thecompoundswerecuredat1.5MPaand160?Cfor60min.2.2.Solid-stateNMRstudiesofsilicas

Aftersilanesurfacetreatmentsonsilicasamples,thesil-icasurfaceswerecon?rmedbysolid-state29SiNMRspec-troscopy(BrukerDSX-300solidFT-NMRspectrometer).

Table1

CompoundingformulationsIngredients

Loading[phr]

Rubber(styrenebutadienerubber)100Silica(VN3)40Zincoxide5Stearicacid

2Dispersiveagent(EF44)

3Accelerator(N-oxydiethylene-2-benzothiazolesulfenamide)1Sulfur

2

2.3.Swellingmeasurementsofsilica/rubbercompositesThedegreeofswellingwasmeasuredaccordingtoASTMD366-82andcalculatedusingtherelation[13,14]Q(%)=

m?m0

m0

×100,(1)

wherem0andmwerethemassesofthesamplebeforeandafterswelling5(measuredusinganelectricbalanceofsensitivity10?g),respectively.Thesolventusedinthisworkwastoluene(molarvolume107cm3/mol;cohesiveenergydensity37.2(J/cm3)0.5).

2.4.Mechanicalinterfacialpropertiesofsilica/rubbercomposites

Thetearingenergy(GIIIC),whichwasoneofthecriticalstrainenergyreleaserates(GC),wascharacterizedbytrouserbeamtestsforthemechanicalinterfacialbehaviorofrubbercompounds.Rectangularspecimensabout70mmlong,50mmwide,and2mmthickwerecutfromasheetthatwasmanufacturedbyatwo-rollmilltechnique.Alltestswereconductedatacrossheadspeedof2mm/min.

Thetensilestrengthofthesilica/rubbercompositeswasmeasuredaccordingtoASTMD412usingaUTM(Univer-salTestingMachine,Instron1125).Alltestswereconductedatacrossheaddisplacementrateof500mm/min.2.5.Thermalstabilityofsilica/rubbercompositesToinvestigatethethermalstabilityofthesilica/rubbercomposites,thermogravimetricanalyseswereperformedinnitrogenusingaTGA951DuPontthermalanalyzerataheatingrateof10?C/minfromroomtemperatureto800?C.

3.Resultsanddiscussion

3.1.Solid-stateNMRstudiesofsilicasurfaces

Figure1showsthe29Si-NMRspectroscopyofsilicasmodi?edbysilanecouplingagents.VSshowsthreepeaks,assignedtothreepossibletypesofsiliconenvironments,toallowtheunambiguousassignmentofthemeasuredres-onancesat?90(a),?100(b),and?110ppm(c)to(HO)2Si(OSi≡)2,(HO)Si(OSi≡)3,andSi(OSi≡)onthesil-icasurfaces,respectively[16].Aftertreatmentwithsilanecouplingagents,separate29Sisignalsfromboththesur-faceandtheattachedsilaneofAPS,CPS,andMPSareobservedtomonitorhydrolysisreactionscausedbyaco-solventofmethanol(95wt%intotalsolvent)anddistilledwater(5wt%intotalsolvent).Thesearesuf?cienttodistin-guishthetwosignalsandshowmainpeaksat?49(d)and?57ppm(e)duetoSi(OH)2RandSi(OSi)(OH)Ronthesurfaces[17],respectively.Also,silanesurfacetreatmentsincreasetheintensityofSi(OSi≡)groupsanddecreasethe

88S.-J.Park,K.-S.Cho/JournalofColloidandInterfaceScience267(2003)

内容需要下载文档才能查看

86–91

Fig.1.Solid-state29SiNMRspectroscopyofsilicasmodi?edbysilanecouplingagents.

intensityof(HO)2Si(OSi≡)2and(HO)Si(OSi≡)3groups

comparedtoVS.MPS-treatedsilicashavethemaximumin-

tensityofSi(OSi≡),Si(OH)2R,andSi(OSi)(OH)Rgroups.

Theresultsindicatethatsilanesurfacetreatmentsleadtoa

decreaseofthehydroxygroupsonsilicasurfacesthrough

siloxaneorhydrogenbondingattheinterfacesbetweensili-

casandsilanecouplingagents.

3.2.Crosslinkdensityofsilica/rubbercomposites

Thedegreesofswellingofthesilica/rubbercomposites

arelistedinTable2.Theswellingbehaviorofthecomposites

oftensilanesurfacetreatmentissigni?cantlydecreasedcom-

paredtothatofuntreatedones.Figure2showstheweight

swelling(g)forthefourdifferentcompositesintoluenewith

dippingtime.Theswellingcurvesofmodi?edsilica/rubber

compositesaresimilartothoseofvirginalsilica/rubbercom-

posites.Theweightswellingofthecompositesisincreased

Table2

Degreeofswellingofthesilica/rubbercomposites

VS

Q(%)676APS646CPS623

内容需要下载文档才能查看

MPS492Fig.2.Weightofswellingasafunctionofsquarerootoftimeforsilica/rubbercomposites.rapidlyuntildippingtime13h;after13hitreachesanequilibriumweight.Buttheweightswellingatequilibriumofthecompositesbysilanesurfacetreatmentisdecreased

comparedtothatofVS-?lledrubbercomposites.There-

S.-J.Park,K.-S.Cho/JournalofColloidandInterfaceScience267(2003)86–91

89

Table3

Crosslinkdensityofthesilica/rubbercomposites

VS

APSCPSMPSVe×1029(m?3)

0.413

0.464

0.497

0.762

sultscouldbeexplainedbysilanecouplingagentsformingmorecompactcrosslinkingstructuresinsilane-treatedsil-ica/rubbercompositesthaninuntreatedones.

Thecrosslinkdensity,Veperunitvolumeinaperfectnetwork,isgivenbytheequation[13,14]Ve=

ρpNA

M,C

(2)

whereρpisthepolymerdensity,NAisAvogadro’snumber,andMCistheaveragemolecularweightofthepolymerbetweencrosslinks.

EquilibriumswellingiswidelyusedtodetermineMC.AccordingtothetheoryofFlory,foraperfectnetwork[13,14],

(φp1/3

pMC=?V1ρp2)

[ln(1?φp)+φp+χ1φ2(3)

p

],whereMCistheaveragemolecularweightofthepolymerbetweencrosslinks,V1isthemolarvolumeofthesolvent,ρpthepolymerdensity,φpthevolumefractionofpolymerintheswollengel,andχ1theFlory–Hugginsinteractionparameterbetweensolventandpolymer.

UsingEq.(2),thecrosslinkdensity,Ve,iscalculatedforthesilica/rubbercomposites,asshowninTable3.Thecrosslinkdensityofthecompositesaftersilanesurfacetreatmentsisincreasedcomparedtothatofuntreatedsil-ica/rubbercomposites.Ingeneral,whensilanecouplingagentsareintroducedontosilicasurfacesinthecompos-ites,twointerfacesexistbetweenthesilicasandtherub-ber:theinterfacesbetweensilicasandsilanecouplingagentsandbetweensilanecouplingagentsandrubber.Therefore,thecompositeswithoutsilanecouplingagentsshowlesscrosslink-densitycomparedwiththatoftreatedonesduetothelackofcureaccelerationbyadsorptionofacceleratorontothesilicasurfaces.

FromtheresultsofNMRstudies,MPS-treatedsilicasareobservedinthehigherintensityofSi(OSi≡),Si(OH)2R,andSi(OSi)(OH)RpeaksthanforVS,APS,andCPS.ThecompositestreatedbyMPSshowthesuperiorcrosslinkdensityinthesesystems.ItisseenthatMPShasorganicfunctionalgroups,whichcanreactwiththedoublebondofvinylester.

3.3.Mechanicalpropertiesofsilica/rubbercompositesAccordingtoKraus[18],thedegreeofadhesionbetween?llersurfacesandrubbercanbeassessedfromtheswellingbehaviorofthesampleinasolvent.Therefore,theswellingratioofthesilica/rubbercomposites,whichismainlydue

内容需要下载文档才能查看

to

Fig.3.Tearingenergy(GIIIC)ofthesilica/rubbercomposites.

thecrosslinkdensityofthecomposites,in?uencestheme-chanicalinterfacialproperties.Inotherwords,themechan-icalinterfacialpropertiesofthe?nalproductaredependent

oncrosslinkdensity.Sothetearingenergycanbeconsideredtobeaninterfacialcharacteristicoftheconstitutiveelementsofamaterial.Thetearingenergies(GIIIC)aremeasuredbyatrouserbeamtestandarecalculatedusingequation[19]GIIIC=

2×F

t

,(4)whereFistheappliedforceandtthewidthofthetearpathaftertearingiscompleted.

AsshowninFig.3,thetearingenergies(GIIIC)ofthecompositesmadefromsilanetreatmentsarelargelyin-creasedcomparedtothoseofVSandincreasedasafunc-tionofthecrosslinkdensity,asseeninTable3.Thesilanesurfacetreatmentsremovesilanolgroupsandintroducenewfunctionalgroupsonsilicasurfaces,whichcanreactwiththerubber.Thesurfacecharacteristicsofsilicasaftersilanetreatmentsleadtoanincreaseofthecrosslinkdensityofthesilica/rubbercompositescomparedtothatofuntreatedsil-ica/rubbercomposites,resultinginincreasedthetearingen-ergyofthecomposites.Theincreasingtearingenergyofthecompositesthenleadstoanincreaseofthemechanicalprop-erties,suchasstressandstrain,asshowninFig.4.Thecom-positestreatedbyMPShavehighercrosslinkdensitythanthatofthecompositesmadefromAPSorCPS,observedinhighertearingenergy(GIIIC).Therefore,itisrecognizedthattheincreasedofcrosslinkdensityofthecompositesim-provesmechanicalproperties,mainlyduetoincreasedadhe-sionatinterfacesbetweensilicasandrubbermatrix,asseeninFigs.3and4[20].3.4.Thermalstabilityofsilica/rubbercomposites

Thethermalstability,measuredintermsoftheonsettemperatureofdegradation[21],isenhancedasthecrosslinkdensityincreases[21,22].

Figure5showstheTGAthermogramofeachofthecomposites.Ascanbeseenfromtheresults,thereisa

90S.-J.Park,K.-S.Cho/JournalofColloidandInterfaceScience267(2003)

内容需要下载文档才能查看

86–91

Fig.4.Stress–straincurvesofthesilica/rubber

内容需要下载文档才能查看

composites.

Fig.5.TGAthermogramsofthesilica/rubber

内容需要下载文档才能查看

composites.

Fig.6.Plotsofln[ln(1?α)?1]versusθfordeterminingthedecomposition

activationenergy.Table4Thermalstabilityparametersofthesilica/rubbercompositesIDT[?C]Tmax[?C]IPDT[?C]Et[kJ/mol]VS364460711108APS364463764113CPS370464787113MPS372466803118littleincreaseintheinitialtemperatureofdegradationofthecomposites.Theresidualweightsofthecompositesbysilanesurfacetreatmentareincreasedcomparedtothoseofuntreatedsilica/rubbercomposites.FromtheTGAcurvesofthecomposites,thermalstabilityisalsogivenbyinitialdecompositiontemperature(IDT),temperatureofmaximumrateofweightloss(Tmax),thermalstabilityconstant,integralproceduraldecompositiontemperature(IPDT),andactivationenergyfordecomposition,Et[22,23],aslistedinTable4.Asaresult,thermalconstantsandIPDTofthecompositestreatedbycouplingtreatmentsaresigni?cantlyincreasedascomparedtothoseofVS.Itisfoundthatthesilanesurfacetreatmentsleadtoalowerdegradationofthecrosslinkedcompositesathighertemperaturethanuntreatedones.Activationenergyfordecomposition,Et,oftherubbercompositescanbecalculatedfromTGAcurvesbytheintegralmethodofHorowitzandMetzger,accordingtotheequation[24]ln??ln(1?α)?1??=Etθ/RTmax2,(5)whereαisthedecomposedfraction,Ettheactivationenergyfordecomposition,Tmaxthetemperatureatmaximumrateofweightloss,andRthegasconstant.Fromtheplotsofln[ln(1?α)?1]vsθ,whichareshowninFig.6,theactivationenergyfordecompositioncanbecalculatedfromtheslopeofthestraightlineinEq.(5).Asaresult,Etofthesilanetreatedsilica/rubbercompos-itesisincreasedcomparedwiththatofVS.ThecompositestreatedbyMPShavesigni?cantlyincreasedEtinthesesys-tems.Thisresultcouldbeexplainedbythesilanesurfacetreatmentsleadingtoanincreaseofcrosslinkdensityofthecomposites,resultinginincreasedthethermalstability,asseeninTable4.Theresultismainlyduetotheformationofacompactedcrosslinkstructureofthecomposites[25].Figure7showsthedependencesofthetearingenergy(GIIIC)andtheactivationenergyfordecomposition(Et)ofthecompositesonthecrosslinkdensity(Ve)ofthecomposites.Asaresult,itisfoundthatthecrosslinkdensityofthecompositesislargelycorrelatedwiththeGIIIC(regressioncoef?cient,R=0.94)andtheEt(regressioncoef?cient,R=0.91)oftherubbercomposites.ThusitisrecognizedthatincreasingVeplaysamajorroleinimprovingthemechanicalinterfacialpropertiesandthermalstabilitiesoftheorganicrubbermatrixofthecomposites.

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注

医学院校附属医院图书馆的现状与对策
傣医传统疗法在康复医学中的应用构想
老年慢性丙型肝炎患者抗病毒治疗的疗效及安全性
第三章护理相关理论及模式
学科门类(二级类)临床医学--护理学[优质文档]
针灸学--针灸治疗课件五官科病证24.牙痛
医学院校电子资源建设现状与用户需求实证研究
心理咨询入门复习资料(可编辑)
护理学的任务、范畴及工作方式
008康复医学治疗技术初级
官方兽医测验试题(植物防疫法部分)[最新]
医学影像处理算法开发平台的设计与实现
按摩疗法在康复医学中的运用举隅
综合教学法在医学影像学实习教学中的运用.doc
医学资料系列之中中医助理针灸学指点:按摩治疗腹痛[精华]
医学院校教育改革的现状及应对措施
医学期刊发表时滞现状及改变措施探讨.doc
[指南]08针康 针灸治疗学
加速康复外科医学理念在骨科患者围手术期护理的效...[宝典]
8年制医学影像学16609
针灸医籍选读课程设置再思考
兽医系统实验室管理规范
我军高原军事医学发展现状与思考
中华医学会检验分会成立30周年庆典大会暨第八次全国检验医学学术会议纪要
试论临床医学检验质量管理要点[权威资料]
[优质文档]4.25免疫计划宣扬日任务总结
关于《针灸学》教学中几个常见问题的讨论
【精品】环境因子对微生物生长和代谢的影响
循证检验医学在检验实习带教中的实践[J].doc
飞行人员高原驻训后医学康复技术与方法

网友关注视频

苏科版数学八年级下册9.2《中心对称和中心对称图形》
外研版英语三起5年级下册(14版)Module3 Unit2
精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
外研版英语七年级下册module3 unit2第二课时
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
外研版英语三起6年级下册(14版)Module3 Unit1
二年级下册数学第一课
沪教版八年级下册数学练习册21.3(3)分式方程P17
河南省名校课堂七年级下册英语第一课(2020年2月10日)
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
外研版八年级英语下学期 Module3
青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
沪教版八年级下册数学练习册21.3(2)分式方程P15
外研版英语七年级下册module3 unit1第二课时
第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
冀教版英语三年级下册第二课
沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
苏科版数学 八年级下册 第八章第二节 可能性的大小
冀教版小学数学二年级下册第二单元《租船问题》