抽屉原理在生活中的应用
上传者:樊建席|上传时间:2015-04-29|密次下载
抽屉原理在生活中的应用
抽屉原理在生活中的应用
学院:经济学院 专业:工商管理类2班
姓名:陈嘉妮 学号:101012012109
摘要:数学家华罗庚曾经说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”这是对数学与生活的精彩描述。在我们的日常生活中,数学的应用无处不在,只要我们细心观察就能发现数学与生活之间微妙的联系。而在众多日常生活数学问题中,抽屉原理是比较常见的。抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。
引言:同年出生的400人中至少有2个人的生日相同;从任意5双手套中任取6只,其中至少有2只恰为一双手套;从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同;任取5个整数,必然能够从中选出三个,使它们的和能够被3整除;某校校庆,来了n位校友,彼此认识的握手问候,无论什么情况,在这n个校友中至少有两人握手的次数一样多;······
经过证明,这些结论都是正确的。而证明所运用的原理就是抽屉原理
正文:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有
n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。” 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是组合数学中一个重要的原理。 第一抽屉原理
原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。
原理2 :把多于mn+1(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。
原理1 、2 、3都是第一抽屉原理的表述。
第二抽屉原理
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。
根据抽屉原理的内容我们可以证明生活中的许多数学问题。
一. 生日问题
同年出生的400人中至少有2个人的生日相同。
证明:将一年中的365天(或366天)视为365(366)个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有2人的生日相同. 400/365=1…35,1+1=2 又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同
二. 握手问题
某校校庆,来了n位校友,彼此认识的握手问候,无论什么情况,在这n个校友中至少有两人握手的次数一样多
证明:共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。
三. 借书问题
11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同
证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”。如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。
四. 整除问题 把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],?,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,?.在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是n的倍数。(证明:n+1个自然数被n整除余数至少有两个相等(抽屉原理),不妨记为m=a1*n+b n=a2*n+b,则m-n整除n)。
例1 证明:任取8个自然数,必有两个数的差是7的倍数。 证明: 在与整除有关的问题中有这样的性质,如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差a-b是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然
数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数。
五. 订阅问题 六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种。问:至少有多少名学生订阅的杂志种类相同?
解析:首先应当弄清订阅杂志的种类共有多少种不同的情况。 订一种杂志有:订甲、订乙、订丙3种情况;
订二种杂志有:订甲乙、订乙丙、订丙甲3种情况;
订三种杂志有:订甲乙丙1种情况。
总共有3+3+1=7(种)订阅方法。我们将这7种订法看成是7个“抽屉”,把100名学生看作100件物品。因为100=14×7+2。根据抽屉原理2,至少有14+1=15(人)所订阅的报刊种类是相同的。
生活中的抽屉原理应用还有很多很多,需要我们细心去发现,研究。解决这类问题的关键是正确利用抽屉原理的具体内容,正确构建抽屉。
其实抽屉原理在现实生活中仅仅只是生活中的数学的冰山一角,数学就在我们身边,用心观察生活,就会发现其中的奥妙。
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 瓦斯爆炸事故应急演练总结报告
- 实施方案
- 河头完小2015年校园文化艺术节实施方案
- 素食餐馆的顾客定位分析
- “工科生的斑斓梦——良言吟春晖”演讲比赛
- 郑州日产汽车有限公司信息类项目实施过程文档管理办法
- 第十届环科赛启动仪式策划0417
- 龙腾品乒乓球社团五月活动新闻稿
- 我校加强校际交流
- 米村村委会冬春农业产业发展三年规划
- 我校于9月25日下午举行12的
- 精准拓客、电开打分细则
- 麻风病防治知识(1)
- 电子商务创业中心管理办法
- 综合布线期中作业
- 农业科技成果转化指南
- 龙腾品乒乓球社团五月活动新闻稿2
- 放风筝的蓝精灵
- 完美解决pdf文档不能打印的问题——用Acrobat 先另存jpg,再用该软件生成新的pdf
- 党员之家活动策划(2)
- 2015广西南宁江南区机关事业单位、社区外聘考试方式及内容
- 部门策划
- 我的好同学,互助你我她活动策划
- 情绪训练策划
- 团辅信心训练计划书
- 机电一体化专业人才培养方案
- 大学生创业计划书
- 2015广西南宁江南区机关事业单位、社区外聘考试成绩查询入口
- 爱心助残义卖活动策划书
- 促进就业一些就业问题的规范
网友关注视频
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 七年级英语下册 上海牛津版 Unit3
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 冀教版英语四年级下册第二课
- 二年级下册数学第一课
- 化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
- 化学九年级下册全册同步 人教版 第18集 常见的酸和碱(二)
- 冀教版小学数学二年级下册1
- 六年级英语下册上海牛津版教材讲解 U1单词
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
- 冀教版英语三年级下册第二课
- 冀教版小学数学二年级下册第二单元《余数和除数的关系》
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 外研版英语七年级下册module3 unit2第一课时
- 3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 七年级英语下册 上海牛津版 Unit9
- 《空中课堂》二年级下册 数学第一单元第1课时
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,广东省
- 外研版八年级英语下学期 Module3
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
- 小学英语单词
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 人教版二年级下册数学
- 《小学数学二年级下册》第二单元测试题讲解
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理