教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> 高等教育> 工学> 天津科技大学外文翻译

天津科技大学外文翻译

上传者:童秉枢
|
上传时间:2015-05-05
|
次下载

天津科技大学外文翻译

天津科技大学电气工程及其自动化毕业设计的外文翻译样板

RenewableEnergy57(2013)587e593

ContentslistsavailableatSciVerseScienceDirect

RenewableEnergy

journalhomepage:w

内容需要下载文档才能查看

http://wendang.chazidian.com/locate/renene

Electricgriddependenceonthecon gurationofasmall-scalewindandsolarpowerhybridsystem

M.Mikatia,M.Santosb,*,C.Armentac

ÅFTechnology,Lindholmspiren9,41756Gothenburg,Sweden

DepartamentodeArquitecturadeComputadoresyAutomática,FacultaddeInformática,UniversidadComplutensedeMadrid,C/ProfesorGarcíaSantesmases,s/n,28040Madrid,Spainc

DepartamentodeFísicaAtómica,Molecular,yNuclear,FacultaddeCienciasFísicas,UniversidadComplutensedeMadrid,CiudadUniversitaria,s/n,28040Madrid,Spain

ba

articleinfo

Articlehistory:

Received16October2012Accepted18February2013

Availableonline25March2013Keywords:

RenewableenergyHybridsystemWindpowerSolarpowerMicrogrid

Energydistributionef ciency

abstract

Resultsarepresentedfromthemodelingofasmall-scaledistributedpowersystemcontainingpowerdemands,photovoltaicarrays,small-scalewindturbinesandanelectricgridconnection.Detailedmodelsofthephotovoltaicarrayandthewindturbinearebrie yexplainedinadditiontothesolarandwindrecoursemodels.Asubunitisde nedtoconsistofapowerdemandtogetherwithpowercontributors.Itisshownhowthegriddependency(orrenewableenergycontribution)isaffectedbytheconnectionofsubunitsandaccordingtotherelationshipbetweenthepowerdemandpatternsandrenewableresourcepatterns.Theoutcomefromseveralcasestudiesispresentedusingsimulatedpowerdemandsandrenewableresources.Inascenariowithsubunitpowerdemandscharacteristicforalargehouseholdandasmallfactory,itisshownthatthecouplingofsubunitsreducesannualgridpowertransfersbymorethan10%andincreasestherenewablepowercontributiontothedemandbyalmost7%.

Ó2013ElsevierLtd.Allrightsreserved.

1.Introduction

Windandsolartechnologyhaveseenarapidgrowthduringthelastdecades.Theinstalledworldcapacityisincreasingexponen-tiallyandproductioncostsarecontinuouslyreduced[1,2].Spain,forexample,hadbytheendof2011awindandsolarpowercontributiontoelectricdemandsofrespectively16%and3%[3],andwindpowerinDenmarkrepresentedalmost26%ofelectricde-mands[4].Moreover,countrieswithlargehydropowerresourceshaverenewableenergycontributionsfarbeyond20%.

Amajorportionofcurrentrenewablepowerproductionisachievedbycentralizedlarge-scalegeneration.However,therearemanyfactorsindicatingthatafuturepowersystemshouldconsistofamixtureofnumeroussmall-scaledistributedpowergeneratorsconnectedintoamicrogrid(orsmartgrid)togetherwiththecentralizedgeneration.Thecentralizedgeneratorsandthemicro-gridclustersareconnectedthroughthemainelectricgrid.

Thebene tsofmicrogridsincludeimprovedoverallsystemreliability,reducedcentralgenerationreserverequirements,localvoltagesupportandreducednetworklosses[5e7].Inaddition,theinvestmentcostofsmall-scalepowergeneratorsmakesitrealistic

*Correspondingauthor.

E-mailaddresses:monir.mikati@http://wendang.chazidian.com(M.Mikati),msantos@dacya.ucm.es,msantospenas@http://wendang.chazidian.com(M.Santos),cardeu@ s.ucm.es(C.

内容需要下载文档才能查看

Armenta).0960-1481/$eseefrontmatterÓ2013ElsevierLtd.Allrightsreserved.http://wendang.chazidian.com/10.1016/j.renene.2013.02.018

forhomeownerstobecomepowerproducerswhichmayincreaseconsciousnessforenergyuse.

ForageneralreviewofmicrogridsseeRefs.[5,8],seealsoRef.[6]regardingthecontrolofmicrogrids.InRef.[7]numerouscasestudiescanbefoundandinRefs.[9,10]microgridsandsmartgridsareexaminedinaBritishandaGermanscenario,respectively.

Thisarticleputsfocusonthegainsofconnectingsmall-scaledistributedpowersystemsincomparisontoindependentcells.Theanalysisbecomesvaluablewhenconsideringthedesignofdistributedpowersystemsonacommunitylevel.Italsoworksasanincentiveforthecouplingofdistributedpowercells.

Withthegrowthrenewabletechnologiessuchasgrid-connectedphotovoltaic(PV)arrays,anincreasedamountofsmall-scaledistributedgenerationisbeingintroducedintothepowersystem.SomecountrieshaveevenacceptedbuildingcodeswhichdemandthatPVarraysandsolarwaterheatingsystemsmustbeinstalledwhenconstructingnewbuildings[2,11].

Thereareseveralreasonswhydistributedpowergeneratorsshouldavoidthemainelectricgrid.Thekeyargumentsinthecontextofthisworkarethelongdistancedistributionlossesofthemaingriditselfandthevoltagetransformationlossesbetweenthedistributedpowercellsandthemaingrid.Onlythelongdistancedistributionlossesare5e20%[1].

Inthisstudy,thepowersystemshowninFig.1isinvestigatedintwocon gurations.Eachcon gurationconstitutesoftwosubsystems:S1andS2.Everysubsystemconsistsofapowerdemand,acontrol

天津科技大学电气工程及其自动化毕业设计的外文翻译样板

588M.Mikatietal./RenewableEnergy57(2013)587e593

I

内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看

ndependentconfiguration

Coupledconfiguration

S2

S2

Fig.1.Schematicofthetwosystemcon gurations:left,independent;right,coupled.Thearrowsmarkthedirectionofthe owofelectricpower.

system,asmall-scalewindturbineandaPVarray.Aconnectiontotheelectricgridisassumedpossible,aswellasthepossibilitytodeliverexcesspowertothegrid.Theonlydifferencebetweenthecon gu-rationsisthatthesubsystemscanexchangepowerinthecoupledcon guration(Fig.1,right).Thisisnotpossibleintheindependentcon guration(Fig.1,left),whosesubsystemshavetoexchangealltheirpowerdirectlywiththegrid.ThecoupledpowersysteminFig.1canbeseenasthesimplesthybridpoweredmicrogridpossible.

Thepurposeoftheanalysisistocomparethepowertransfersoftheindependentandthecoupledsystemwiththemaingridandtoinvestigatehowtheconnectionofsubsystemsaffectsthegridde-pendencyandtherenewablecontributiontothepowerdemands.

Thisstudyhasbeencarriedoutbysimulation,usingpowerdemandstypicalforlargehouseholdsandasmallfactoryorstore.

Theorganizationoftherestofthepaperisasfollows.Section2describesallpartsofmodelaswellasthemodelstructure.InSection3,theresultsfromthesimulationsarepresentedanddis-cussed.Conclusionsendthepaper.2.Developmentofthemodel

Modelingisausefultoolinordertostudycomplexsystemsindifferent elds[12].Inthispaper,allmodelsdevelopedtorepresentthescenarioinFig.1wereimplementedinMatlab/Simulinkwithasamplingperiodof10min.Simulationsweremadeonlyconsid-eringelectricalpower ow;hencenoconsiderationsweremaderegardingaspectssuchaspowerquality.

Onedayofeverymonthwasusedandtakenascharacteristicfortherespectivemonthregardingwindfeaturesandsolarradiationdurationandintensity.Stochasticelementswereincludedinthesolarandwindmodelstoimitatetheunpredictablenatureoftheserenewableresources.Themodeledresourcesmaybetunedtomatchsitespeci cconditionsusingwindspeedandsolarradiationmeasurements.Hence,themodelcanbeusedtoevaluatecertainenergysupplysystemsusingresourceuncertaintiesthatmimicparticularlocalconditions.

Thefollowingsectionsbrie ydescribethemodelsandmethodsusedtosimulatethescenarioshowninFig.1.DetaileddescriptionsandexplanationsofthemodelscanbefoundinRef.[13].2.1.Thesolarresource

Solarradiationonearthcanbemodeledasthesumofadirectanddiffusecontribution,anditisreferredtoasglobalortotalradiation.Thedirectradiation(orbeamradiation)representsthesolarradiationreceivedbyaplanewithouthavingbeenscatteredbytheatmosphere.Thediffuseradiationrepresentsthescatteredsolarradiationandisheremodeledasbeingisotropic,henceuni-formlydistributedfromallovertheskydome.Thisisaverysimplewayofmodelingdiffuseradiationandmoreaccuratemethodsexist.Thissimpli cation,however,hasaminorin uenceontheendresultsofthestudy.

Thesolarresourcemodelwasbasedonaclearskyradiationmodel,givenbyRef.[14].Theclearskymodelestimatesthebeamanddiffuseradiationtransmittedthroughclearatmosphericcon-ditionsonahorizontalplane,givenazenithangle,analtitudeandcorrectionfactorswhichaccountfortheclimatetype.Fourdifferentclimatetypesareused;tropical,mid-latitudesummer,sub-arcticsummerandmid-latitudewinter.Radiationonatitledplaneiscalculatedatanyinstantbyusingthelatitude,theorientationofthecollectorplane,thetimeofyearandthehouroftheday.

Themajorityofthemodel’sparametersareeasilydeterminedsincetheyaregivenbythegeometricalrelationshipbetweenthesunandtheearth.Ontheotherhand,theeffectoftheatmosphericconditionsontheincomingsolarradiationmustbecarefullystudiedbeforerealizingsitespeci cmodeling.Thein uenceoftheatmosphericconditionsis,intheclearskymodel,determinedbythealtitudeandtheclimatetype.

Partiallyrandomattenuationoftheradiationwasaddedtotheclearskymodelwiththeaimtoapproachtheunpredictabilityofrealworldconditions.Thelevelofalloweddistortionwasde nedseparatelyforeverymonth,duetochangesintheatmosphericconditionsthroughouttheyear.Thedistortionoftheclearskyra-diationmaybetunedtomatchspeci clocations.However,inthisstudythemainpurposeofthedistortionistointroducesimplebutrealisticuncontrollablereductionsofPVpoweroutput.Thisisimportantsincethesimulationsamplingperiodwas10min.

Thedistortionwasassumedtoreducethedirectradiationmomentarily,andforanumberoflargerperiodsthroughouttheday.Thesmaller uctuationsofthedirectradiationareprovoked rstlybyselectinganallowedreductionlevel,andthentheactualreductionisgeneratedusingarandomselectionfunction.Thelargerperiodswithoutdirectradiation(duringdaytime)http://wendang.chazidian.comtitudehasbeensetto40 N,heightto600mandtheclimatetypecorrespondstomid-latitudesummer.Thecollectorplaneisfacingsouthanditis

天津科技大学电气工程及其自动化毕业设计的外文翻译样板

M.Mikatietal./RenewableEnergy57(2013)587e593

589

April

)

2m/W( TGSolar timeMay

)

2

内容需要下载文档才能查看

m/W( TGSolar time

Fig.2.ExamplesofmodeleddailyirradianceoncharacteristicdaysforAprilandMay.

tiltedtoanangleequaltothelatitude.AscanbeseeninFig.2,therandomdistortionismodeledtoaffectonlythedirectradiation.Thediffuseradiationisassumednottobeaffectedbypassingcloudssinceitismodeledasisotropic.Again,thisisasimpli cationsincethecloudswillrendertheincomingdiffuseradiationfromtheskydomesomewhatheterogenous.2.2.Thewindresource

Thewindresourceonaparticularsitedependsonamultitudeofaspects,suchas:theearth’sthermalmass,topographyandlatitude[15e17].Anincreasedelevationabovegroundgenerallyleadstosmootherwindssincesurfaceroughnessprovokesunstablebehavior.Inthisstudythefollowingsimplemethodwasusedtogeneratedailywindspeedpro les.Thewindwasconsideredtoconsistofanaveragewindspeedpro le,withtwotypesofrandomdistortionsuperposed:

Turbulence,thatdisturbsalldatapointsofthedaywiththesameprobability.

Stronger uctuationsthataffectonlypartsoftheday.

Theaveragewindspeedpro lewascreatedbydividingthedayintosixequallylonglinearsegmentsof4h.Turbulencewasthengeneratedbylettingeverydatapoint uctuateaccordingtoanormaldistributionfunction.Thestronger uctuationswereaddedanddesignedtolastfor20mineachtime.Finally,acertainamountofrandomizationwasincludedintothemeanwindpro leinordertogeneratenewwinddayseverytimethemodelwasrun.

Itispossibletoadjustthedistortionoftheaveragewindpro letoincreaseorsmooth-outuncertainties.TwocomparisonsareshowninFig.3betweenrecordedwindmeasurementsandwindpro lesgeneratedwiththemodel.Windmeasurementswererecordedin(above)Celestún,Méxicoat20m,the29thofOctober2006andin(below)Ambewela,SriLankaat20m,the20thofMay2001.

2.3.Thephotovoltaicarray

PlentyofliteratureexistsonthemodelingofPVsolarcellsandmodules[18e22].ThisstudystartsfromtheequivalentcircuitshowninFig.4andmainlyfollowsthemethoddescribedbyRef.[19].TheresultofthedevelopmentproposedinRef.[19]isaSimulinkmodelofaPVmodulewherethenumberofcellsinpar-allelandseriescanbede ned,aswellasparameterscommonlyknownsuchastheopencircuitvoltage,theshortcircuitcurrentandtheidealityfactor.Inthisway,commercialPVmodulescanbemodeledusingthemanufacturer’sdatasheet.

)

s/

内容需要下载文档才能查看

m (eedps

内容需要下载文档才能查看

nd WiTime

)

s/m(d eepsd niWTime

http://wendang.chazidian.comparisonsbetweenmodeleddailywindspeedpro lesandwindmeasure-mentsrecordedwitha10-minsamplingperiod.Themodeledwindpro leshavedeliberatelybeenelevatedtofacilitatethecomparison.

Inadditiontothedevelopmentof[19],thefollowingexpressionwasusedtoaccountforthevariationsintheopencircuitvoltagewithtemperature[20]:

V OC¼VOC;0LITCÀT

ref

(1)

whereVoc,0istheopencircuitvoltageatthereferencetemperatureTref,LIisatemperaturecoef cient,andTCisthecelltemperature.

InFig.5,acomparisonismadebetweenPVmoduleperfor-mancecurvesgeneratedwithmodelandthespeci cationsfromthemanufacturerofaPVmodule.Theclosenessbetweenthemodel’sandthemanufacture’scurrentevoltageandpowerevoltagerelationshipsgivesreliabilitytothemethodused,atleastata xedcelltemperature.2.4.Thesmall-scalewindturbine

Greatdifferencesarefoundinwindturbinetechnologydependingonsizeandcapacity.Windturbineswithanominalcapacitylessthan10kWareusuallysimplerthanlargeturbinesandexcludefeaturessuchasgearboxandbladeregulation.Theyareoftenequippedwithapermanentmagnetsynchronousgenerator[1,17,24]andneednoexternalpowersupply.Mostcommonly,theangularvelocityatveryhighwindspeedsislimitedusingafurlingmechanism[25,26],whichturnstherotordiscawayfromthewind

内容需要下载文档才能查看 内容需要下载文档才能查看

Fig.4.Simpli edequivalentcircuitofasolarcell.

天津科技大学电气工程及其自动化毕业设计的外文翻译样板

590M.Mikatietal./RenewableEnergy57(2013)587e593

http://wendang.chazidian.comparisonbetweenIeVandPeVcurvesofthemodeledphotovoltaicpanel(left)andthespeci cationsgivenbythemanufacturer(right)ofthephotovoltaicpanelNE-165U1[23].

内容需要下载文档才能查看

directionandstronglyreducesthepowerextraction.Consequently,thepowercurveofafurlingequippedwindturbinehasadrasticreductioninoutputcapacityafteracertainwindspeed,incontrasttolargerwindturbinesthatcommonlymaintainthepoweroutput.

Inthisstudy,generalwindturbineequationsfrome.gRefs.[15,25,27e30]wereusedtosimulatethepowerextractionfromthewind,theaerodynamicsoftherotor,andtheelectricaloutput.Adirectcurrentmachinewasusedtorepresentthepermanentmagnetsynchronousgeneratorwitharecti edoutput,amethodalsousedbyRef.[27].Additionally,simplemodi cationsweredevelopedtomodelthefurlingeffectonthewindturbinepoweroutput.ThepowercurveofthewindturbinemodelispresentedinFig.6.

2.5.Modelstructure

ThewindandsolarresourcemodelswereconnectedwiththemodelsofthePVmodules,thewindturbineandthepowerde-mandsaccordingtoFig.1.Threepowerdemandswereusedintheanalysis;theyareshowninFig.7andrepresentthepowerdemandoftwohouseholds(house1and2)andonesmallfactoryorstore.ItcanbeseeninFig.7thatthetwohouseholdshavesimilarelectricity

Power (kW)

consumptionpatterns,characterizedbypowerdemandpeaksduringtheearlymorninghoursandintheevening.Incontrast,theelectricityconsumptionofthesmallfactoryismorecontinuousandinphasewiththesolarresource.TakingthedayinFig.7asrepre-sentativefortheentireyear,annualenergydemandsareabout9.0,7.5and15.8MWhforhousehold1,household2andthesmallfactory,respectively.

Someadditionalelementswereincludedinthemodeltoac-countforlossesinthepowersystem.Theireffectonthe owofpowerwascalculatedusingtheiref ciencies.Thefollowingele-mentswereincluded:

PowerinvertertoconvertPVoutputfromDCtoAC,theef -ciencyoftheinverterisshowninFig.8.

BoostconvertertoadjustthePVoutputvoltage,h¼80%[31]. Buck-Boostconvertertoadjustwindpoweroutputvoltage,h¼90%[32].

Filtertosmooththeinverteroutput,h¼97%.

Transformationbetweentheinverterandtheelectricgrid,h¼95%[33]

内容需要下载文档才能查看

.

Power (W)

Wind speed

Hour

Fig.6.Powercurveofthemodeledsmall-scalewindturbine.

内容需要下载文档才能查看

Fig.7.Thethreepowerdemandsusedduringsimulations.

天津科技大学电气工程及其自动化毕业设计的外文翻译样板

M.Mikatietal./RenewableEnergy57(2013)587e593591

)

(% ynceiciffEPercent of full load

Fig.8.Ef ciencyofthepowerinverterusedduringsimulations.AdaptedfromRef.[21]

内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看

.

Itwasassumedthatthetransformationlossesbetweentheinverterandthepowerconsumerswerenegligible.2.6.Conditionsoftotalsystemsimulations

20PVmoduleswereconnectedinparallelineachsubsystemtogetherwitha7kWwindturbine.EachPVmodulehadanominalcapacityof165W,andthecut-inandcut-outspeedsofthewindturbinewere3and25m/srespectively.ThePVcellef ciencywasconsideredasconstant.Bothsubsystemswereassumedtobecloselylocated,hencetheirwindandsolarresourcesweresaidtobethesame.

Thegridpowertransfersofeachsubsystemintheindependentcon gurationwerecalculatedbysubtracting,ateveryinstant,thepowerdemandfromthesumofconvertedPVandwindpoweroutput.Eachsubsystemwilldeliverpowertothegridifthatequationturnsoutpositiveanditwillbeextractingpowerfromthegridifitisnegative.Sincethecoupledsystemcanexchangepowerbetweensubsystems,thepowertransferswiththegridinthiscon gurationwerecalculatedasthesumofthepowertransfersofsubsystem1and2ateveryinstant.

ThewindpoweroutputwasgivenahighercontributionprioritythanthePVarraysifthecollectivewindpowerandPVoutputexceededthepowerdemandsofthesubsystems.Thiswasdeter-minedduetothecostperinstallednominalcapacity,whichgenerallyislowerforwindturbinesthanforPVarrays[2,21].

Thesolarresourcewassettorepresentsasitelocatedat40 NandatmosphericconditionsapproachingthoseofMadrid,Spain.Thewindresourcewasestablishedascontinuousbutmoderate.Yet,itmustbeemphasizedthatnofurthereffortwasmadetomatchthesimulationconditionstothisparticularlocation.Thepowersystemmodelwasstudiedusing ctionalrenewableresources.3.Results

3.1.Resultsfromaone-daysimulationexample

InFig.9,aone-daysimulationoftheentiresystemispresentedforthemonthofMarch.ThebottompartofFig.9showsthewindandsolarresourcesonthatparticularday.ThediagramsaboveshowtheACwindandPVpowergenerationtogetherwiththepowerdemandsofthetwosubsystems.Thepowerdemandsofsubsystem1and2correspondtohousehold1andthesmallfactory.ThetoppartofFig.9showsthepowertransfersbetweenthegridandsubsystems1and2respectively.Italsoshowsthepowertransfersfortheentirecoupledsystem.

Asexpected,thewindresourceisfairlystablethroughouttheday,alteredbycontinuoussmall uctuationsandafewlargerones.

Fig.9.Exampleofaone-daysimulationforthemonthofMarch.ThepowerdemandofS1andS2correspondstohousehold1andthesmallfactoryrespectively.

Theincomingirradiancereachesabout900W/m2aroundmiddaybutiscontinuouslydistortedbytheatmosphere.Thedirectradia-tionisabruptlyeliminatedduringperiodsbypassingclouds.Thisleadstoamoderatebutuninterruptedwindpowergenerationandastrong,butdiscontinuousPVpowergeneration.Itcanbenotedthat,forbothsubsystems,thereareperiodswhenthedemandexceedsthesupplyandviceversa.Thisisalsore ectedinthepo-wertransferplotatthetopofFig.9.Inbothcon gurationsthereareperiodsofpositivepowertransferwhenelectricityisdeliveredtothegridandnegativepowertransferwhenelectricityistakenfromthegrid.Theidealcaseimpliesceropowerexchangewiththegrid.Thiswouldmeanthatnopower owstoorfromthegridandrenewablepowersupplyequalsdemand.

ItcanbeseeninthepowertransferplotatthetopofFig.9thatthecoupledsystemsometimestransfersmorepowerthanthetwosubsystemsindividually.Thishappens,forexample,around19:00h.However,thepowertransfersofthecoupledsystemcanneverexceedthecollectivepowertransferofbothsubsystems,becauseitisthesumofthetwo.Onotheroccasionsthepowertransfersofthecoupledsystemapproacheszero.Thishappens,forexample,at09:00handbefore16:00h,anditoccurswhenthesignsofthesubsystem’spowertransferareopposite.Thatis,ac-cordingtothemodel,thecouplingofsubsystemswillreducepowerexchangewiththegridif,atanyinstant,onesubsystemisgener-atingexcesspowerwhiletheotherismomentarilyinapowerde cit.Ontheotherhand,theconnectionofsubsystemsissuper- uousduringperiodswhenbothsubsystemssimultaneouslyhaveanexcessorshortageintheirpowergeneration.3.2.Longtermeffectsofcouplingthesubsystems

Thesubsequentresultswereobtainedfromone-yearsimulationrunsusing rstly:thepowerdemandsofhousehold1andthesmallfactory,andsecondly,thepowerdemandsofhousehold1and2.Thewindandsolarresourcesweresimilarinbothsimulationrunswhenmeasuredinaverageenergyperdayandtotalannualresource.Averagedailysolarirradiancewasbetween2.5and4.5kWh/m2andtheaveragedailywindspeedwasbetween4.4and6.8m/s.Theannualef ciencyofthePVarraywas10.8%andthecapacityfactorofthewindturbinewas20.0%.

Thedailysolarradiationgeneratedwiththemodelisnotablylowerthantheannualaverageofdailysolarradiationmeasuredby

内容需要下载文档才能查看

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

沪教版八年级下册数学练习册21.3(3)分式方程P17
沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
冀教版小学数学二年级下册第二单元《余数和除数的关系》
苏科版数学八年级下册9.2《中心对称和中心对称图形》
【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
沪教版牛津小学英语(深圳用)五年级下册 Unit 1
七年级英语下册 上海牛津版 Unit3
外研版英语三起6年级下册(14版)Module3 Unit1
沪教版八年级下册数学练习册21.3(2)分式方程P15
北师大版小学数学四年级下册第15课小数乘小数一
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
外研版英语七年级下册module1unit3名词性物主代词讲解
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
冀教版英语三年级下册第二课
外研版英语三起6年级下册(14版)Module3 Unit2
冀教版小学数学二年级下册第二单元《租船问题》
六年级英语下册上海牛津版教材讲解 U1单词
苏科版数学 八年级下册 第八章第二节 可能性的大小
沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
外研版英语三起5年级下册(14版)Module3 Unit2
北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
二年级下册数学第一课
人教版二年级下册数学
沪教版八年级下册数学练习册21.4(1)无理方程P18
3月2日小学二年级数学下册(数一数)