Line-based 3D Reconstruction of Wiry Objects
上传者:邱金桓|上传时间:2015-05-05|密次下载
Line-based 3D Reconstruction of Wiry Objects
18thComputerVisionWinterWorkshop
WalterG.Kropatsch,FuensantaTorres,GeethaRamachandran(eds.)Hernstein,Austria,February4-6,2013
Line-based3DReconstructionofWiryObjects
ManuelHofer,AndreasWendel,HorstBischofInstituteforComputerGraphicsandVisionGrazUniversityofTechnology,Austria
{hofer,wendel,bischof}@icg.tugraz.at
Abstract.Man-madeenvironmentscontainmanyweaklytexturedsurfaceswhicharetypicallypoorlymodeledinsparsepointreconstructions.Mostno-table,wirystructuressuchasfences,scaffolds,orpowerpylonsarenotcontainedatall.Thispaperpresentsanovelapproachforgeneratingline-based3Dmodelsfromimagesequences.Initially,camerapositionsareobtainedusingconventionalStructure-from-Motiontechniques.Inordertoavoidexplicitmatchingof2Dlinesegmentsinthevariousviewsweexploittheepipolarconstraintsandgenerateaseriesof3Dlinehypotheses,whicharethenveri?edandclusteredtoobtainthe?nalresult.Weshowthatthisapproachcanbeusedtodensifyvarioussparseoccupiedpointcloudsofurbanscenesinordertoob-tainameaningfulmodeloftheunderlyingstructure.
1.Introduction
Generating3Dmodelsfromasetofimageshasbecomeawidelystudied?eldofresearchoverthelastfewyears.Themajorityofavailablealgorithmsisbasedonpointcorrespondencesbetweenmulti-pleviewsusingvariouslocaldescriptorssuchastheScale-InvariantFeatureTransform(SIFT)
内容需要下载文档才能查看 内容需要下载文档才能查看[13]inor-dertoobtaina3Dpointcloudwhilesimultaneouslyestimatingthecameraparameters.ThisprocessiscalledStructure-from-Motion(SfM).Thedensityoftheresultingpointcloudhighlydependsontheamountoftextureavailableintheimages.There-fore,point-basedSfMmayfailinman-madeenvi-ronmentswithalowamountofdistinctiveinterestpoints(e.g.urbanscenes,indoorscenes).Totacklethisissue,manyline-basedapproacheshavebeenpresentedovertheyears,duetothefactthatespe-ciallyman-madeobjects(e.g.buildings)canusuallyberepresentedbyasetof3Dlinesegments.Similar
Figure1.Twoexamplesforwirystructures.Theleftim-ageshowsapowerpylonandtherightimageascaffoldinfrontofahouse.
totraditionalSfMitisusuallynecessarytomatch2Dlinesegmentsfromvariousviewstotriangulatea3Dlinesegment.Thiscanbedoneusingappearance-basedsimilaritymeasures,e.g.normalized-cross-correlation(NCC)orlinedescriptors[12,21],whichcanbecombinedwithadditionalgeometriccon-straints[3].Sincetheendpointsofmatchedlineseg-mentsusuallydonotcorrespondtoeachotherduetoinexactlinesegmentdetectionorocclusions,creat-ing3Dlinesegmentsfrommatched2Dlinesismuchmoredif?cultthantraditionalpoint-to-pointmatch-ing.
Mostofthepreviousapproachesrelyonanaccu-ratelinematchingprocessbetweenthevariousviewsusingsomeappearance-basedsimilaritymeasures.Thisusuallyworks?neifthelinesarelocatedonaplanarsurfacewithconstantbackground,forin-stancewhenmatchingwindowframes.However,whendealingwithwirystructuressuchaspowerpy-lons,bridgesorscaffolds(seeFigure1forsomeex-amples),appearance-basedmatchingishardlypos-sibleduetochangingsurroundingsofthelineseg-mentsindifferentviews(seeFigure2).Wepresentanapproachwhichisespeciallydesignedtohandlesuchcasesbutalsoperformswellonsolidobjects.
内容需要下载文档才能查看 内容需要下载文档才能查看
Figure2.Anexamplewerenoappearancebasedlinematchingcanbeperformed.Notethatcorrespondinglinesegmentshavedifferentsurroundingsinbothviews(yel-lowlines).
2.RelatedWork
Inthefollowingwepresentselectedpapersfromthe?eldofline-based3Dreconstruction.Westartwithanoverviewofappearance-basedmethodswhichcannotdirectlybeappliedtoourproblembutsharesomeideaswithourapproach.
Baillardetal.[1]presentedamethodwhichmakesuseoftheepipolarconstraintbyestimatinglinecorrespondencesalongtheepipolarbeam.To?ndthecorrectmatchtheyevaluatetheNCCscoreforcandidatelinesusingpatchesaroundthelineseg-ments.Theestimated3Dlinesegmentistheinter-sectionofthehalf-planesthroughthelinesofsightofthetwoendpointsinbothviews.Theyfurtherver-ifytheirhypothesesbyminimizingthereprojectionerrorusingthetrifocaltensor[6].
Bayetal.[2]useoptionalregionmatchesinad-ditiontolinematchesbasedoncolorhistogramsinordertoestablishaninitialsetofcandidates.Theyapplyatopological?lterinordertoremovewrongcandidatesandincreasethecandidatesetbyaddingunmatchedlinesegmentswhich?ttothetopologicalstructureofthealreadymatchedhypotheses.Theyfurtherestimatetheepipolargeometryusingcopla-narsubsetsoftheircandidateset.Veryaccuratere-sultsarereported,evenforsparselytexturedscenes.Inordertogenerate3Dlinemodelsforurbanscenes,Schindleretal.[16]proposedanapproachwhichtakesvanishingpointinformationintoac-count.Theyassumethatrelevantedgesarelo-catedalongmutuallyorthogonalvanishingdirectionswhichreducesthedegreesoffreedomfor3Dlinees-timation.Theirapproachdeliverspleasantresultsforurbanstructuresbutunfortunatelyislimitedtopic-turestakenatnear-groundlevelduetotheirassump-tions.
AnotherapproachpresentedbyKimetal.[8]isbasedontheintersectioncontextofcoplanarline
pairs.TheymatchlineintersectioncontextfeaturesacrossmultipleviewsusingNCCassimilaritymea-sureandrejectfalseintersectionsusingcoplanarityconstraintsonthecorrespondinglinesegments.Theproposedmethodworkswellforawiderangeofsce-nariosevenwhenonlylittletextureisavailable.Unfortunately,alloftheseappearance-basedap-proachesusuallydonotperformwellforwirystruc-tures,sincetheytechnicallydonotmatchthelineitself,butratheritssurroundings.Inourcase,ex-plicitmatchingmaybeimpossible,sincetheeverchangingbackgroundisnotcoplanarwiththelineandoftenveryfarawayfromtheobjecttoberecon-structed.Inordertocreate3Dmodelswithouttheneedofexplicitlinematching,Jainetal.[10]de-velopedasweepingbasedapproachwhichde?nestheunknown3Dlocationsoftheendpointsof2Dlinesegmentsasrandomvariables.Theyestimate3Dlinehypothesesbygeneratingallpossibleend-pointlocationsinacertaindepthinterval(assumingknowncameraintrisicsandextrinsics)andkeeptheonewiththehighestscorebasedonthegradientim-agesofmanyneighboringviews.Hence,theycreatea3Dlineforevery2Dlineineveryview.Inordertodeleteoutliersandclustercorrespondinglineseg-mentstogether,theygroup3Dlinesegmentswhichliecloseinspaceanddiscardallsegmentswhichdonothaveatleastonesuchneighbor.Theyalsoper-formanoptimizationbasedon2Dlineconnectionsusingloopybeliefpropagationtoenforceconnected3Dlines.Eventhoughtheirapproachdeliversveryaccurateresultsandisveryrobustagainstnoiseandpartialocclusions,itisveryslowcomparedtoprevi-ousapproaches.
Inourapproachwebuildupontheprinciplespre-sentedin[10]butuseadifferentmatchingstrat-egy.Insteadofusingatimeconsumingsweepingapproachwegeneratehypothetical3Dlinesegmentsusingepipolarconstraints,whichdrasticallylimitsthenumberofpossible3Dlocationsforeach2Dlinesegment.Wewillshowthatthisleadstoasigni?cantperformanceincreasewhilestillcreatingaccuratere-sults.
3.SparseStructure-from-Motion
GivenanunorderedsetI={I1,...,In}ofnimagesandthecorrespondingcamerasC={C1,...,Cn}wewanttogenerateasetof3DlinesegmentsS={S1,...,Sk}.Sincewedonotper-formexplicitlinematchingandline-basedrelative
poseestimationthecamerashavetobeknownbe-forehand.Forthispurposeweuseapoint-basedSfMsystem.Thislimitstheapplicationtosceneswhereinterestpointscanbefound,butwehaveseenthatwecanusually?ndenoughcorrectcorrespondencesforanaccuraterelativeposeestimationintheback-groundofwirystructures.
WefollowtheapproachofWendeletal.
内容需要下载文档才能查看 内容需要下载文档才能查看[20]andIrscharaetal.[9]whichenablesustoperformsparseSfMforunorderedimagesets.Thethreenec-essaryprocessingstepsarefeatureextraction,featurematching,andgeometryestimation.Inthe?rststepweextractSIFT[13]featuresfromallimages.SIFThasbeenshowntoworkwellingeneralscenes[14],butitalsoworkssurprisinglywellinscenarioswithwirystructures.Thereasonisthatmatchesareob-tainedeitherinthebackground,orintheforegroundincaseofahomogeneousbackgroundsuchassky.Afterwards,wematchtheresultingkeypointdescrip-torsbetweenallpossibleimagepairsandperformageometricveri?cationprocedureusingtheFive-Pointalgorithm[15].Inordertoeliminatepossi-bleoutliersweuseRANSAC[5]forrobustestima-tion.Theresultingpairwisereconstructionsarethenmergedtoobtainasparsereconstructionofthescene.Finally,bundleadjustment[17]isappliedtomini-mizetheglobalreprojectionerroroverallmeasure-ments.See[19]and[7]forfurtherdetails.
AsaresultweknowtherelativepositionsofallcamerasCinacommoncoordinateframe,andwecanthusproceedtothetaskof3Dlinesegmentesti-mation.
4.Reconstructionof3DLineSegments
Ouralgorithmconsistsofthreesteps:2Dlineseg-mentdetectionextractslinesegmentsfromeachin-putimage,3Dlinesegmenthypothesesgenerationtriestoestimatethe3Dpositionofthesesegments,and?nally3Dlinegroupingandoutlierremovalmergescorrespondingsegmentsfromdifferentviewsandremovesincorrectestimates.Inthefollowingsectionsthesestepswillbeexplainedindetail.
4.1.2DLineSegmentDetection
Inordertogeneratetriangulated3Dlinesegmentsfromasetofimages,we?rsthavetoapplyalinesegmentdetectionalgorithmontoourinputimages.WeemploytheLineSegmentDetector(LSD)[18]algorithmtoextractallrelevantlinesegmentswithasfewincorrectdetectionsaspossible.Theauthors
Figure3.LineSegmentDetection.ThelinesegmentsextractedusingtheLSD[18]algorithmarevisualizedinpseudo-colors.Theunderlyingwirystructureisrepre-sentedverywell,exceptforafewoutliersduetonoisygradients,causeforinstancebygrass.
reporttheiralgorithmtobesigni?cantlyfasterthanpreviousmethodswhileproducingveryaccuratere-sults.Theirapproachisbasedonthegroupingofpointswithahighgradientandsimilarlevellinean-gle,followedbyaleastsquaresline?t.AlldetectionsarevalidatedusingtheHelmholtzprinciple[4]whichprovestobeveryeffectiveforthegeneralcase.Fig-ure3showsthedetectedlinesegmentsforapowerpylonimage.
4.2.3DLineSegmentHypothesesGenerationAssumingnofalsedetectionsinthepreviousstep,every2DlinesegmentfromimageIicorrespondstoa3Dlinesegmentinworldspace.Sincewecannotperformanexplicitappearance-basedmatchingpro-cedureandtriangulation,wehavetoestimatethecor-rect3Dlocationofeachsegmentinadifferentway.AsweknowtheprojectionmatrixPiofthecam-era,http://wendang.chazidian.comingtheepipo-larlinesepandeqde?nedbythetwoendpointspandqofacertainlinesegmentlinviewi,wecanlimitthepossiblematchesforltothoselineseg-mentswhoseendpointslieonepandeqrespectively.Inpracticeitisunlikelythatwewill?ndanexactmatchwithbothendpointsbeinglocatedexactlyontheepipolarlines,e.g.duetoimpreciselinedetectionorocclusions.Thereforeweextendallcandidateseg-mentswhichoverlapwiththeregionbetweenthetwoepipolarlinestoin?nity(fromlinesegmentstoac-tuallines)andintersectthemwithepandeqinordertogeneratehypotheticalmatches.Thisenablesusto
?ndcorrectmatchesevenifthe
内容需要下载文档才能查看 内容需要下载文档才能查看 内容需要下载文档才能查看currentlinesegmentisshorterorlongerinIj(seeFigure4).Foreveryhypothesiswecreatea3DlinesegmentLbytrian-gulatingthetwocorrespondingendpointpairsfromthetwoviewsIiandIj.
Sinceweusuallyhavemorethanonehypothesisforeach2Dlinesegment(becausetheepipolarlinesdonotprovideenoughinformationtoperformexactmatching),wehavetodeterminewhichoneiscor-rect.Thereforeweadoptagradientbasedscoringapproachsimilarto[11,10].Wethenbackprojecteachi3DlinesegmentLintoallneighboringviewsN(I)ofIiwithacameracentercloserthanacer-taindistancedencesmallerthancandanabsoluteviewinganglediffer-dangtothecurrentcameraCi.ForeachcamerawecomputeasetofmeasurementpointsMalongandperpendiculartothebackprojectedline,andcomputetheimagegradient-basedscore
s(L)=
1
??
?????I(x)??|N(I)|
e?(λ·dist(x,L)max)2
I∈N(Ii)x∈M(I)
|M(I)|
(1)
forevery3DlinesegmentL,where?I(x)de-notestheimagegradientatpositionx,dist(x,L)istheperpendicularEuclideandistancetothebackpro-jectedlineinthecurrentimageIanddistmax(L)denotesthemaximumdistancebasedonthecon?g-urationofthemeasurementpoints.Assumingthatlinesegmentscorrespondtohighgradientareasinimages,thismethodensuresthatwechoosethehy-pothesiswhich?http://wendang.chazidian.comingthisformulawegivemoreweighttomeasurementpointswhichareclosertothebackprojectedline,andlessweighttothoseperpendiculartoitdependingonthedistance.AnillustrationisgiveninFigure5.
Aftercomputingthescoreforeachhypothesiswechoosetheonewithmaximumscore,denotedasLbest,whichisthenaddedtoour3DlinesegmenthypothesessetH.Sincewegenerate3Dlineseg-mentsforallviewsindividually,weendupwithaquitelargehypothesessetwhichhastobepruned.Figure6showsanexamplefora3Dlinemodelbe-foregroupingandoutlierremoval.
4.3.3DLineGroupingandOutlierRemovalItispossiblethatthecorrectmatchesfor2Dlinesegmentsarenotamongthecandidates,forinstancebecausethelinesegmentsarenotredetectedinanyneighboringview,andthereforewehavetoremovepossibleoutliers.Theoutlierremovalprocessgoeshandinhandwiththelinegroupingstepwhichhastobeperformedinordertoremovemultipledetec-tions.Sincewematchandtriangulatethe2Dline
Figure5.Theleftimageshowsthegradientmagnitudesfromapowerpylonimagewithabackprojected3Dlinehypothesisshowninred.Therightimageshowsaclose-upofthelinesegmentwiththesetofmeasurementpointsMillustratedasyellowlines.Theweightedsumofthegradientmagnitudesoverallmeasurementpointsiscom-putedandthendividedbythenumberofpointsinordertocomputethescoreforthisview.Theaveragescoreoverallneighboringviewsisthenusedtoevaluatethebesthy-pothesis(seeEquation1).
Figure6.3Dlinesegmenthypothesesbeforethegroup-ingandoutlierremovalprocedure.Ourapproachgener-ates71538segmentsfrom106views.Notethatthereisalargenumberofoutliersduetoincorrectmatches,butthepowerplyonwhichappearsintheimageryisclearlyrecognizable.
segmentsindividuallyforeveryview,thesame3Dlinemightbegeneratedinmultipleviews.Assumingacorrectmatchingprocedure,allthehypothesesinHwhichcorrespondtothesame3Dlineshouldbelocatedcloseinspace.Hence,alineclusteringalgo-rithmisperformedinordertogeneratethe?nal3Dlinemodel.
Inordertoremoveincorrectlytriangulated3Dlinesegmentsandclustercorrespondingsegments,weadopttheideaofspatialproximitybasedgroupingfrom[10].First,weorderthehypothesessetHby
内容需要下载文档才能查看
Figure4.WematchthelinesegmentLinviewIiwithlinesegmentsfromviewIjusingitsepipolarlinesepandeq.Thebluelinesegmentsarepossiblecandidatematchesbecauseoftheiroverlapwiththeregionbetweenthetwoepipolarlines.Theendpointsofthehypotheticallinesegmentsusedfortriangulationareshownasbluedots.Theorangelinesegmentdoesnotoverlapwiththeepipolarlinesandisthereforenotconsideredtobeapossible
内容需要下载文档才能查看match.
Figure7.Togroupcorresponding3Dlinesegmentsto-gether,thetruesegmentL(green)isexpandedby10%ineachdirection.Allotherlinesegmentswithbothend-pointswithinacylinderofradiusr,de?nedbythenewendpoints,areconsideredtobeinthesamegroupasL(bluelines).Theredlinedoesnotbelongtothegroup,becauseoneofitsendpointsisoutsidethecylinder.
Figure8.Afterthegroupingproceduremostoftheoutliershavebeensuccessfullyremovedresultinginanaccurate3Dmodel(1381linesegments).
scoreindescendingordertostartgroupingwithlineswhicharebestalignedwiththeimagegradients.ForeachlineLm∈Hwede?neacylinderofa?xedradiusrbyexpandingthecentralaxisofthelineseg-mentby10%inbothdirections.Wethentryto?ndalllinesegmentsLn,n=mwherebothendpointsarelocatedwithinthecylinder
内容需要下载文档才能查看(Figure7).
Ifthe?nallinegroup(includingLm)hasatleasthminmembersweconsiderittobevalidandexcludealllinesegmentsinthegroupfromfurthergrouping,otherwiseLmisremovedfromHandwecontinuewiththenextbesthypothesis.
Aftertheclusteringstep,eachgroupisreplacedwithonesinglelinesegmentforour?nal3DlinesegmentsetS.Tode?nethislinewe?rstcomputethecenterofgravityofalllinesegmentendpointsfromthegroup.Afterwardsweperformasingularvaluedecompositionofthescattermatrixcontainingallendpointsandtaketheeigenvectorcorrespondingtothemaximumeigenvalueasnewlinedirection.Wenowprojectallendpointsontothenewlineandaddthelinesegmentde?nedbythetwooutmostpointstoS.Figure8illustratestheoutcomeofthegrouping
procedure.NotethatcomparedtoFigure6mostoftheoutliershavebeensuccessfullyremoved.
5.Experiments
Intheprevioussectionwehavealreadyshownaresulting3Dmodelofapowerpylon.Inthissec-tionwewanttopresentadditionalresultsand?nallycompareouralgorithmto[10]usingoneoftheirtest-cases.
5.1.ParameterSelection
Thevariousstepsofourapproachrequireasetofparametersinordertogeneratepleasantresults.Mostofthemarevalidforalargenumberofscenar-iosandthereforedonotneedtobeespeciallytuned.Thelinesegmentdetectionalgorithm(LSD[18])doesnotneedparameters.Inordertoeliminateout-liersandspeedupthecomputationwereject2Dlinesegmentssmallerthan1%ofthediagonallengthoftheimageinpixels,whichisusuallysuf?cienttocap-turetheunderlyingstructureofourimages.
Duringhypothesesgenerationweneedtodeter-
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 2016年职称英语复习词汇
- 职称英语考试复习单词
- 法学院五一校友返校邀请函
- 职称英语备考词汇
- 写给自己-——女孩
- NCE1测试
- 双语优美句子三
- while和when用法总结
- 2015年04月18日雅思口语考题回顾
- 英语阅读理解训练43
- 22个职称英语词汇
- 职称英语单词记忆的好方法
- 研究生英语听力答案文档
- In a market dominated by expensive colle
- 六大绝招助你结束雅思写作苦恋
- 2016职称英语词汇
- 浅议形容词性物主代词和名词性物主代词的区别和用法
- 新日本语能力考试N1语法强化训练26
- 2015年04月18日雅思听力考题回顾
- SAT写作的表达方式
- 学习职称英语的十大恶习你有木有?
- 四级考试单词
- Olduvai Stone Chopping Tool 奥杜瓦伊石质切割工具(大英博物馆-BBC纪录片)
- 接待外国人英文口语
- 5周突破新能力考文字词汇N2级第二周第七单元07
- 雅思小作文常用套路及常用词汇
- 全国中学生英语能力竞赛写作解题指导
- SAT写作复习过程中的建议
- 雅思写作Task2开头该怎么写
- 2015年04月18日雅思写作A类考题回顾
网友关注视频
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 北师大版小学数学四年级下册第15课小数乘小数一
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 沪教版八年级下次数学练习册21.4(2)无理方程P19
- 化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
- 每天日常投篮练习第一天森哥打卡上脚 Nike PG 2 如何调整运球跳投手感?
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
- 七年级下册外研版英语M8U2reading
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
- 外研版英语七年级下册module3 unit1第二课时
- 【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
- 三年级英语单词记忆下册(沪教版)第一二单元复习
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
- 冀教版小学英语四年级下册Lesson2授课视频
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 二年级下册数学第三课 搭一搭⚖⚖
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
- 七年级英语下册 上海牛津版 Unit5
- 外研版英语三起5年级下册(14版)Module3 Unit2
- 冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,辽宁省
- 3月2日小学二年级数学下册(数一数)
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理