教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> > 化学> 立方块CuO

立方块CuO

上传者:梁文林
|
上传时间:2015-04-26
|
次下载

立方块CuO

MaterialsLetters71(2012)32–35

ContentslistsavailableatSciVerseScienceDirect

MaterialsLetters

journalhomepage:http://wendang.chazidian.com/locate/matlet

Shape-controlledsynthesisofself-assemblycubicCuOnanostructuresbymicrowave

LeileiGuo,FangTong,HaowenLiu,HanminYang?,JinlinLi

KeyLaboratoryofCatalysisandMaterialsScienceoftheStateEthnicAffairsCommission&MinistryofEducation,HubeiProvince,South-CentralUniversityforNationalities,Wuhan430074,China

articleinfoabstract

Self-assemblythree-dimensional(3D)cubicCuOnanostructureswithameansizeofapproximately230nmweresynthesizedbyheatingcupricacetate(Cu(OAc)2·H2O)aqueoussolutioninthepresenceofpolyvinyl-pyrrolidone(PVP)andcetyltrimethylammoniumbromide(CTAB)undermicrowaveirradiation.TheCuOnanostructureswerecharacterizedbytransmissionelectronmicroscopy(TEM),X-raypowderdiffraction(XRD)andthermogravimetricanalysis(TGA),whichindicatedthattheas-synthesizedcubicCuOnanostruc-tureswereaself-assemblyofmonodispersednanoparticles.TheconcentrationoftheCu(OAc)2,themolarratioofCu(OAc)2/NaOH/PVP,togetherwiththeheatingtimebymicrowavewerefactorsaffectingthesuccess-fulsynthesisofcubicCuOnanostructures.Themechanismandtheformationfactorsoftheself-assemblywerediscussed.

CrownCopyright©2011PublishedbyElsevierB.V.Allrightsreserved.

Articlehistory:

Received31March2011Accepted27November2011

Availableonline11December2011Keywords:

CuOnanoparticlesCubic

MicrowaveNanomaterialsMicrostructure

1.Introduction

Inthepastdecades,theresearchonthesynthesisofvariousnanos-tructures(nanowires,nano?lm,nanorod)hasattractedmuchattentionbecauseoftheirsizeandshape-inducednovelandphysicochemicalproperties[1–3].Mostofthenanoscalematerialsneedsmall-size,nar-rowdistributionandwell-?nedmorphologytoshowtheirbestcharac-ter,thereforemanyresearchersfocusonthedesignandshape-controlofthedesirednanostructuresincludingmetal,semiconductorandmetaloxide,tooptimizethesematerialsforapplications[4,5].

CuO,asanimportantp-typesemiconductorwithanarrowbandgap(1.4eV),hasbeenwidelyappliedinhigh-Tcsuperconductors,solarenergytransformation,magneticstoragemediaandgassensors[6,7].Duetothesesigni?cantapplications,manymethodshavebeendevelopedtoprepareCuOnanostructureswithvariousmorphologies.Zhangetal.synthesizeddendrite-likeCuOnanostructuresbyasimpleethyleneglycol(EG)assistedhydrothermalmethod.Leaf-like,chrysanthemum-likeandrodshapedCuOnanostructureshavebeensynthesizedbymicrowave-assistedapproachinanionicliquid1-n-butyl-3-methylimidazoliumtetra?uoroboratemedium[8,9].How-ever,theshape-controlofself-assemblythree-dimensionalcubicCuOnanostructureshasnotbeenreported.Inrecentyears,usingmonodis-persednanoparticlesasbuildingunitstoassemblewell-de?nedtwo-andthree-dimensional(2Dand3D)super-latticeshasbeenactivelyinvestigatedbecauseoftheirnovelpropertiesandpotentialapplica-tionsinopticalgratings,optical?lters,datastorage,andmicroelectronicdevices[10–12].Hence,itwouldbeofgreatsigni?cancetosynthesize

theself-assembly2Dor3DCuOsuper-latticestoimproveitsperfor-manceintheapplications.

Inthispaper,self-assembly3DcubicCuOnanostructuresweresyn-thesizedbyheatingcupricacetate(Cu(OAc)2·H2O)aqueoussolutioninthepresenceofpolyvinylpyrrolidone(PVP)andcetyltrimethylammo-niumbromide(CTAB)undermicrowaveirradiation.Thenanostruc-tureswerecharacterizedbytransmissionelectronmicroscopy(TEM),X-raypowderdiffraction(XRD)andthermogravimetricanalysis(TGA).Furthermore,theeffectsofsynthesisparametersontheshapecontrolofself-assemblycubicCuOnanostructureshavebeeninvesti-gated,andtheself-assemblymechanismisproposedanddiscussed.2.Experimental

Cupricacetate(Cu(OAc)2·H2O),polyvinylpyrrolidone(PVP,aver-agemolecularweight,Mw=30,000,Kermelchemicals),cetyltri-methylammoniumbromide(CTAB,99.5%,Acroschemicals),ethyleneglycol(EG,Acroschemicals)andsodiumhydroxide(NaOH,82.0%,sinopharmchemicals)wereallofanalyticalgradeandusedwithoutfurtherpuri?cation.Inatypicalsynthesis,2.00mLCu(OAc)2aqueoussolution(0.02molmol·dm?3)and3.00mLPVPaqueoussolution(0.13mol·dm?3)wereaddedintoa50mLround-bottomed?ask,then10.00mLEGsolutioncontaining0.08mMNaOHand0.05mMCTABwasaddedtothe?ask,keepingthemolarratioofCu(OAc)2/NaOH/PVPat1/2/10.Themixedsolutionwasheatedinamodi?eddo-mesticmicrowaveoven(Galanz,900W)whichwasconnectedtoare?uxingsystemfor120s.Thedarkbrowncolloidwasobtainedandthencooledtoroomtemperature.

Thetransmissionelectronmicroscopy(TEM)oftheas-synthesizedCuOnanostructureswasoperatedonaFEITecnaiG220at200kV.ThesampleforTEMobservationwaspreparedbyplacingadropofthe

?Correspondingauthor.Tel.:+862767842752.E-mailaddress:yhm@http://wendang.chazidian.com(H.

内容需要下载文档才能查看

Yang).

0167-577X/$–seefrontmatter.CrownCopyright©2011PublishedbyElsevierB.V.Allrightsreserved.doi:

内容需要下载文档才能查看

10.1016/j.matlet.2011.11.105

L.Guoetal./MaterialsLetters71(2012)32–3533

Fig.1.XRDpatternofCuOnanoparticles.[Cu(OAc)2]=0.02mol·dm?3,Cu(OAc)2/NaOH/PVP=1/2/10(molarratio),reactiontime=120s.

colloidaldispersionontoacoppergridcoatedwithaperforatedcar-bon?lm,followedbyevaporatingthesolventatambienttemperature.Theaverageparticlesizeandthedistributionweredeterminedfromabout200particlesoftheenlargedmicrographs.

ThesamplewasobtainedbywashingtheCuOsolutionwithabso-luteethanolandcentrifugingat4000rpmfor30min,theprecipitatewasthenspreadonaglassplateanddriedbyinfrared.ThesampleswerecharacterizedbyX-raypowderdiffraction(XRD)onaBrukerD8X-raydiffractometerusingCuKaradiationwith40kVand50mAandscanningrateof0.02s?1inthe2θrange10°–80°.

Thermogravimetricanalysis(TGA)wasconductedonaNETZSCHinstrumentsSTA409usingapuritynitrogenatmosphere(?owrateof100mL/min),withheatingfromroomtemperatureto800°Cataheatingrateof40K/10min.3.Resultsanddiscussion

AtypicalXRDpatternoftheself-assembledCuOsamplewasshowninFig.1.Threediffractionpeakscorrespondingtothe(?111),(111),and(002)latticeplaneswereobservedwhichwasconsistentwiththeliteraturevalues(JCPDS80-1268).Nopeaksofimpurityweredetected,indicatingthatpureCuOnanostructuresweresynthesized.Meanwhile,theaveragesizeofCuOnanoparticleswascalculatedusingScherrerequationtobe5.7nm.However,thesizeofassembledcubicCuOnanostructureswasapproximately230nmfromTEMimagesindicatingsecondarystructuresfromtheassemblyofindividualnanoparticles.

Inatypicalsynthesis,themorphologyandsizeofcubicCuOnanos-tructuresweregreatlyin?uencedbydifferentinitialconcentrationsof

Cu(OAc)2.Fig.2illustratedtypicalTEMimagesofthesynthesizedCuOnanostructureswhentheconcentrationofCu(OAc)2was0.01mol·dm?3,0.02mol·dm?3and0.20mol·dm?3,whichshowedthecubicmorphologywithanaveragesizeofabout40nm,90nmand140nmrespectively.TheTEMimagesindicatedthatthesizeofthesynthesizedCuOnanostructuresincreasedwithincreasingCu(OAc)2concentration,whilethecubicshapewasmaintained.ApossibleexplanationmaybethatthehighconcentrationofCu(OAc)2increasedtherelativerateofatomicstackandcrystalgrowthmorethantherateofnucleation.

PVP,astheprotectionandcappingagent,playsanimportantroleontheshapecontrolofthesynthesisofmetalandmetaloxidenano-particles.Inourstudy,themolarratioofCu(OAc)2andPVPwasalteredtoinvestigatethein?uenceofPVPonthemorphologyandsizeoftheCuOnanostructures.Fig.3arevealedthemorphologyoftheCuOnanostructureswithoutusinganyPVP.Thenanoparticlesshowedirregularshapewithwidesizedistributionandaggregationswereevident,duetothelackofprotectiononthesurfaceofthenano-particles.Theself-assemblycubicCuOnanostructuresformedundertheconditionsofCu(OAc)2/PVP=1/10,asshowninFig.3b.WhentheconcentrationofPVPincreasedtoCu(OAc)2/PVP=1/20,sphericalshapedCuOwerefoundasseeninFig.3c.ThereasonthatthesizeofnanoparticlesdecreasingwiththehigherPVPconcentrationmaybeexplainedasfollows:WhenPVPinthesolutioniswithlowconcen-tration,itonlyplayedasastabilizerwhichcanpreventtheCuOnano-particlesfromagglomeration.AstheconcentrationofPVPincreased,excessPVPencapsulatedtheinitialCuOnanoparticlesandsuppressedthegrowthofthesesmallparticles,whichdecreasedthesizeofinitialnanoparticlesandcausedtheCuOnanostructurestobecomesmaller.Therefore,theformationoftheself-assemblycubicCuOnanostruc-turesrequiredappropriateconcentrationofPVP.

Inaddition,accordingtotheTEMimagesofCuOnanostructuresatdifferenttimes,itwasfoundthatthepreparedcubicCuOnanostruc-turesweresecondarystructuresfromself-assemblyofmanyindivid-ualprimarynanoparticles,asshowninFig.4.TheTEMimagesshowedthecubicCuOwithdifferentshapesat30s,60s,90sand120s.Asthereactionmixturewasheatedundermicrowavefor30s,onlytheaggregatedCuOwasobtained,whilesphere-likeCuOnanos-tructureswereformedwithcontinuousheatingfor60s,thenthesphericalnanoparticlesgrewintonanoparticlesofconnectedindivid-ualcubicCuOnanostructureswithheatingtimefor90s.Finally,theinitialsecondarynanostructurestransformedintotheself-assemblycubicmorphologyafterheatingfor120s.Themechanismofthenano-particlesaggregatingintosphere-likeshapesandthendevelopingintocubicnanostructuresindicatedthatthecubicCuOnanostructuresex-periencedaprocessofself-assembly.Moreover,theself-assemblystructureswerecon?rmedbythefollowingevidences.First,thepri-marynanoparticlesthatservedasbuildingblocksoftheself-assemblyofcubicCuOnanostructureshadnarrowsizedistribution,

(a)(b)(c)

Fig.2.TEMmicrographsofCuOnanoparticleswithdifferentconcentrationsofCu(OAc)2:(a)0.01mol·dm?3;(b)0.02mol·dm?3;(c)0.2moldm?3.Inallcases,Cu(OAc)2/NaOH/PVP=1/2/10(molarratio),reactiontime=120

内容需要下载文档才能查看

s.

34L.Guoetal./MaterialsLetters71(2012)32–35

(a)(b)(c)

Fig.3.TEMmicrographsofCuOnanostructureswithdifferentmolarratiosofCu(OAc)2/NaOH/PVP:(a)1/2/0;(b)1/2/10;(c)1/2/20.Inallcases,[Cu(OAc)2]=0.02mol·dm?3,re-actiontime=120s.

asshowninFig.4b.Second,Fig.4cshowedthattheas-synthesizedcubicCuOnanostructurescontainedmanyporesandsurfacedefects,whichcanbeconsideredastheresultsoftheself-assembly.Recently,variousmechanismsoftheself-assemblyhavebeenproposed.Zhengetal.assertedthattheself-assemblyofnanoparticlesintotwo-orthree-dimensional(2Dand3D)super-latticesrequiredacontrolledsizedistributionandattractiveforcesuchasvanderWaalsattractionandbalancedinteraction[13].Duringassembly,theprimarynanopar-ticlesweredrawntowardeachotherbytheattractiveforce,andthenformedastablesuperstructureunderthebalanceofstericinteractionbetweenthem.Meanwhile,theself-assemblynanostructureshaveminimumsurfaceandpotentialenergytoformstablenanocrystals.Thoughthemechanismoftheself-assemblyisnotentirelyclear,theself-assemblyof2Dor3Dnanostructuresprovidesaresearchdirectionforthesynthesisofagoodmorphologythatcanbeusedinactualapplicationsinmany?elds.

TheTGAspectrumofCuOnanostructureswaspresentedinFig.5,whichillustratedthemassvariationsofthesampleswithtempera-ture.At25°Cto250°Ctemperaturerange,thespectrumhadonlywispychangethatwascausedbythesmallamountofwaterinthesample.However,thereappearedaweightlossof27.93%overthe256°Cto443°Ctemperaturerange,andanotherweightlossof10.09%overthe443°Cto548°Ctemperaturerange.ThereasonofthetwoobviousweightlossprocessesmaybethedecompositionofthePVPandCTABabsorbedonthenanostructures.Asthetemperatureincreasestoover550°C,thespectrumthatappearedhasnoweightlossandremainedsteadily,whichindicatedthattheorganismdecom-posedabsolutely.TheTGAspectrumshowedthatthePVPandCTAB

(a)(b)

(c)(d)

Fig.4.TEMmicrographsofCuOnanostructuresindifferentreactiontimes:(a)30s;(b)60s;(c)90s;(d)120s.Theinsetof(c)showstheenlargedcubicCuOnanostructures.Inallcases,[Cu(OAc)2]=0.02mol·dm?3,Cu(OAc)2/NaOH/PVP=1/2/10(molarratio).

L.Guoetal./MaterialsLetters71(2012)32–3535

Fig.5.TGAspectrumofcubicCuOnanostructures.

absorbedonthenanostructuresandtheas-synthesizedCuOwerestable.4.Conclusion

Self-assemblythree-dimensional(3D)cubicCuOnanostructuresweresynthesizedbyheatingCu(OAc)2aqueoussolutioninthepres-enceofPVPandCTABundermicrowaveirradiation.Theconcentra-tionofCu(OAc)2andPVPwereimportantfactorsinthesynthesisofself-assemblycubicCuOnanostructures.WhentheconcentrationoftheCu(OAc)2wascontrolledat0.02mol·dm?3,andthemolarratioofCu(OAc)2/NaOH/PVPwasmaintainedat1/2/10,thenheatingby

microwavefor120s,theself-assemblycubicCuOnanostructureswithwellde?nedmorphologyanddispersioncanbeobtained.TheXRDandTEMpatternsindicatedthatthecubicCuOnanostructureswereformedviaaprocessofself-assembly.Theself-assembly3DcubicCuOnanostructuresmaybeusedasnovelmaterialsinvariousapplications.Acknowledgment

ThisresearchwassupportedbytheSpecialFundforBasicScienti?cResearchofCentralColleges,South-CentralUniversityforNationali-ties(ZZY10004).References

[1]BaiXiangtao,GaoYanan,LiuHong-guo,ZhengLiqiang.JPhysChemC2009;113:

17730–6.

[2]JianweiLiu,FangChen,MengZhang,HaoQi,ChuanlingZhang,http://wendang.chazidian.comngmuir

2010;26:11372–7.

[3]DongyunHan,HuaiyuYang,ChengyunZhu,FuhuiWang.PowderTechnol

2008;185:286–90.

[4]MaRan,SemaginaNatalia.JPhysChemC2010;114:15417–23.

[5]JunwuZhu,HuipingBi,YanpingWang,XinWang,XujieYang,LudeLu.MaterLett

2007;61:5236–8.

[6]FanXY,WuZG,YanPX,GengBS,LiHJ,LiC,etal.MaterLett2008;62:1805–8.[7]WenzhongWang,YanZhuang,LinLi.MaterLett2008;62:1724–6.

[8]HuiZhang,ShenzhongLi,XiangyangMa,DerenYang.MaterResBull2008;43:

1291–6.

[9]XiaodongXu,MengZhang,JingFeng,MilinZhang.MaterLett2008;62:2787–90.[10]TakuyaHarada,http://wendang.chazidian.comngmuir2009;25:6407–12.

[11]HelmutColfen,MarkusAntonietti.AngewChemIntEd2005;44:5576–91.[12]ShiyongZhao,SuhuaWang,http://wendang.chazidian.comngmuir2004;20:1977–9.

[13]RongkunZheng,HongweiGu,BingXu,FungKwokK,XixiangZhang,Ringer

SimonP.AdvMater2006;18:2418–

内容需要下载文档才能查看

21.

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
北师大版数学 四年级下册 第三单元 第二节 小数点搬家
沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
外研版英语七年级下册module3 unit2第二课时
第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
苏科版数学七年级下册7.2《探索平行线的性质》
二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
外研版八年级英语下学期 Module3
苏科版数学 八年级下册 第八章第二节 可能性的大小
第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
《小学数学二年级下册》第二单元测试题讲解
三年级英语单词记忆下册(沪教版)第一二单元复习
沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
北师大版数学四年级下册3.4包装
30.3 由不共线三点的坐标确定二次函数_第一课时(市一等奖)(冀教版九年级下册)_T144342
冀教版小学数学二年级下册第二单元《余数和除数的关系》
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
沪教版牛津小学英语(深圳用) 四年级下册 Unit 12
人教版历史八年级下册第一课《中华人民共和国成立》
第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
飞翔英语—冀教版(三起)英语三年级下册Lesson 2 Cats and Dogs
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
外研版英语三起5年级下册(14版)Module3 Unit1
沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
沪教版牛津小学英语(深圳用) 四年级下册 Unit 4