Design and analysis of biodiesel production from algae grown
上传者:孙雅明|上传时间:2015-05-08|密次下载
Design and analysis of biodiesel production from algae grown
CleanTechnEnvironPolicy(2010)12:239–254DOI10.1007/s10098-009-0215-6
ORIGINALPAPER
Designandanalysisofbiodieselproductionfromalgaegrownthroughcarbonsequestration
GracePokoo-AikinsÆAhmedNadimÆ
MahmoudM.El-HalwagiÆVladimirMahalec
Received:18October2008/Accepted:13March2009/Publishedonline:31March2009ÓSpringer-Verlag2009
AbstractThispaperaddressesthedesignandtechno-economicanalysisofanintegratedsystemforthepro-ductionofbiodieselfromalgaloilproducedviathesequestrationofcarbondioxidefromthe?uegasofapowerplant.Theproposedsystemprovidesanef?cientwaytothereductioningreenhousegasemissionsandyieldsalgaeasapotentialalternativetoedibleoilscur-rentlyusedforbiodieselproduction.Algaecanbeprocessedintoalgaloilbyvariouspathways.Thealgaloilcanthenbeusedtoproducebiodiesel.A?owsheetoftheintegratedsystemissynthesized.Then,processsimulationusingASPENPlusiscarriedouttomodelatwo-stagealkalicatalyzedtransesteri?cationreactionforconvertingmicroalgaloilofChlorellaspeciestobiodiesel.Costesti-mationiscarriedoutwiththeaidofICARUSsoftware.Furthereconomicanalysisisperformedtodeterminepro?tabilityofthealgaloiltobiodieselprocess.Theresultssuggestthat,forthealgaloiltobiodieselprocessanalyzedinthisstudy,factorssuchaschoosingtherightalgalspe-cies,usingtheappropriatepathwayforconvertingalgaetoalgaloil,sellingtheresultingbiodieselandglycerolatafavorablemarketsellingprices,andattaininghighlevelsofprocessintegrationcancollectivelyrenderalgaloiltobeacompetitivealternativetofood-basedplantoils.KeywordsProcessintegrationÁProcesssimulationÁBiodieselÁTransesteri?cationÁMicroalgaloil
G.Pokoo-AikinsÁM.M.El-Halwagi(&)
DepartmentofChemicalEngineering,TexasA&MUniversity,3122TAMU,CollegeStation,TX77843,USAe-mail:El-Halwagi@tamu.edu
A.NadimÁV.Mahalec
DepartmentofChemicalEngineering,McMasterUniversity,1280MainStreetWest,Hamilton,ONL8S4L9,Canada
Introduction
Biodieselisatransportationfuelthathasgrownimmenselyinpopularityoverthepastdecade.Withthedwindlingreservesoffossilfuels,http://wendang.chazidian.commonsourcesforbiodieselfeedstockincludesoy,sun?ower,saf?ower,canola,http://wendang.chazidian.comtelytherehasbeengrowingcontroversyabouttheuseofpotentialfoodsourcesfortheproductionoffuel.Inattempttoaddresstheseconcerns,researchershaveturnedtheirfocusfromthepopularfeedstockandarecurrentlyinvestigatingtheuseofalternative,non-foodrelatedfeedstocksuchasoilfromalgae.
Algaearealargeanddiversegroupofsimpleplant-likeorganisms,rangingfromunicellartomulticellarforms.Thesecellshavetheabilitytoconvertcarbondioxidetobiomassthatcanfurtherbeprocesseddown-streamtoproducebiodiesel,fertilizerandotherusefulproducts.Photosyntheticgrowthofalgaerequirescarbondioxide,waterandsunlight.Temperatureshouldbeintherangeof20–30°Cinordertohavegoodgrowingcondi-tions.Algaealsoneedotherinorganicnutrientslikephosphorusandnitrogeninordertogrow.Thefactthatmicroalgaegrowinaqueoussuspensions,allowsformoreef?cientaccesstoH2O,CO2andothernutrientswhichexplainsthepotentialfortheproductionofmoreoilperunitareathanothercropscurrentlyused.Thechemicalcompositionofalgaediffersbasedonspecies.Algaehaveseveralcharacteristicsthatcausethemtobeacandidatebiodieselfeedstockthatdeservesseriousinvestigation.
Theadvantagesofusingalgaeforbiodieselproductioninclude:
123
240?Nocompetitionforlandwithcrops?Nocompetitionwiththefoodmarket
?
Abilitytogrowinwaterwithhighlevelsofsaltsothereisnoadditionaldemandoffreshwater.Also,areaswithsalinegroundwaterthathasnootherusefulapplica-tionscanbetargeted
?Overalluselesswaterthanoilseeds
?
Highoilyield:algae(oftheaquaticspecies)requirelesslandforgrowththanbiodieselfeedstockfromterrestrialplantsbecausetheyarecapableofproducingmoreoilperhectare(Chisti2008a).Table1showsthepotentialgallonsofoilperacreperyearfromdifferentcrops.Furthermore,theoilcontentinalgae(perdryweight)canreachashighas80%(Chisti2008a).Itisworthnotingthattheoilfrommicroalgaecanbeextractedwithyieldsupto80–90%(Grimaetal.1994;Fajardoetal.2007;Belarbietal.2000).
?
Ef?cientsequestrationofCO2:anotherreasonwhymicroalgaeareattractiveisthatCO2(ofabouthalfoftheofdryalgaeweight)isneededforgrowth(Chisti2008a).CO2isacommonindustrialpollutant,thusmicroalgaecancontributetoreducingatmosphericCO2byconsumingCO2wastesfromindustrialsourcessuchaspowerplants.
Thereareninemajorgroupsofalgaewhicharecya-nobacteria(Cyanophyceae),greenalgae(Chlorophyceae),diatoms(Bacillariophyceae),yellow-greenalgae(Xanto-phyceae),goldenalgae(Chrysophyceae),redalgae(Rhodophyceae),brownalgae(Phaeophyceae),dino?ag-ellates(Dinophyceae)and‘pico-plankton’(PrasinophyceaeandEustigmatophyceae)(Huetal.,2008).Oftheseninegroups,thegreenalgaearethelargesttaxonomicgroup.Microalgaehavebeenknowntosurviveunderawiderangeofconditions.Underoptimalconditions,microalgaehavelipidcontentbetween5and20%dryweightwhileunderunfavorableconditionslipidcontentincreasesbetween20and50%(Huetal.2008).Hence,itisidealtocultivatemicroalgaeunderoptimalconditionsandlaterexposethemtounfavorableconditionsinordertoincreaselipidcontent.
Table1Gallonsofoilperacreperyear(Chisti2008a)GallonsofoilperacreperyearCorn18Soybeans48Saf?ower83Sun?ower102Rapeseed127
OilPalm635
Microalgae
5,000–15,000
123
G.Pokoo-Aikinsetal.
Laboratoryexperimentsutilizinggreenalgae,diatoms,andoleaginousspeciesfromothereukaryotictaxashowthatthemicroalgaehaveoilcontentof26,23,and27%dryweight,respectively,underoptimalconditionsand46,38,and45%dryweight,respectivelyunderstressconditions(Huetal.2008).Dependingonthespeciesofmicroalgae,oilcontentcanbefurtherincreasedbylimitingcertainnutrientssuchasnitrogen,phosphorusorsulfur.Forexample,limitingsulfurcontentcanincreaselipidcontentinChlorellasp.(Otsuka1961).
Withthegrowinginterestingrowingalgaeforenergyapplications,differentopinionshavebeenexpressed.Theopinionsrangefromconcernstoskepticismabouttheenergyef?ciency,scaleup,andeconomicfeasibilityofmicroalgalusefortransportationfuelsandotherenergyneeds(e.g.,Anslow2008;Sweeney2008;Reijnders2008)topositiveassessmentofitsef?ciencyandfutureindustrialapplicationsinproducingbiodieselmeetingASTMstan-dards(e.g.,Chisti2007,2008a,b;MiaoandWu2006).Thegrowthofalgaerequirescarbondioxideasoneofthemainnutrientsneeded.ThereisanopportunitytosequesterCO2byusing?uegasemissionsfromindustrialsourcesastheCO2feedforalgaecultivation.Theobjectiveofthispaperistodevelopatechno-economicanalysisofaprocessforsequesteringCO2from?uegasintogrowingalgaewhichprovideslipidsthatareprocessedtoproducebiodiesel.Acombinationofsystemsynthesis,simulation,integration,andanalysisisusedtoassessthetechnicalandeconomicperformanceoftheprocess.Acasestudyissolvedtodiscussthevariousmetricsoftheprocess.
Problemstatement
Theproblemtobeaddressedinthepapermaybestatedasfollows:
Givenanindustrialsource(e.g.,powerplant)whichproduces?uegas(?owrateMandcompositionZ),itisdesiredtosequesterCO2fromthe?uegastogrowalgaewhichistobeprocessedtoproducebiodiesel.Thepaperwilldevelopasystemsapproachforthealternativeprocesspathsandperformatechno-economicanalysistodeterminetheoptimaldesignofa?uegastobiodieselsystemthroughthecultivationofalgae.Thepaperwillalsoprovideananalysisofthetechnicalandeconomicmetricsoftheaforementionedsteps.Systemoverview
Theoverallsystemiscomposedoftwomainsections:anupstreamprocessingsectionwhichisaimedatsequesteringtheCO2,growingthealgae,andproducingthelipidsandadownstreamprocessingsectionwhichincludesthe
Designandanalysisofbiodieselproductionfromalgae241
pretreatmentofthelipidsfollowedbytransesteri?cationthenseparationand?nishingtoyieldthebiodiesel.Figure1illustratesthesekeysteps.Algaeselection
Thechoiceofalgaespeciesshouldaddressspeci?ccharacteristicsthatallowtheuseof?uegasastheCO2source.Muchresearchhasbeendoneonthetoleranceofdifferentspeciesto?uegases.Severalspecieswerefoundtobesuitableforthegrowthofalgaeusing?uegas.OneofthesemanyspeciesisChlorellaspecies.Hanagataetal.(1992)foundthatChlorellaistoleranttoCO2concen-trationsofupto40%byvolume.Sungetal.(1999)reportedthatchlorellagrewinconditionsofupto40°C.TheseresultsindicatethatChlorellaisagoodchoiceforthisstudy.
Inthiswork,theChlorellaspeciesischosen.TheoilcontentofChlorellatypicallyrangesbetween28and32%dryweight(Chisti2007)butcanreach46%dryweightunderstressconditions(Huetal.2008)and55%dryweightwhengrownheterotrophically(http://wendang.chazidian.comrmationaboutthefattyacidcompositionsofvariousmicroalgae(namelythegreenalgaeintheclassesChlorophyceaeandPrasinophyceae)waspublishedin1992(Dunstanetal.1992).ChlorellaisintheclassChloro-phyceaandthefattyacidcompositionsofthreeChlorellaspecieswerelisted.Chlorellasp.(CS-195)wasusedinthisanalysisbecauseofitspotentialeaseforuseinsimulation.ItisinterestingtonotethattheChlorellaprotothecoides(CS-41)compositionincludesthesamefattyacidspresentintheChlorellasp.chosen(Dunstanetal.1992)butinslightlydifferentproportions.AnotherreasonwhyChlo-rellasp.waschosenistheavailabilityofinformationaboutitsgrowth,harvestingandextraction.Feedstockproduction
Algaecanbecultivatedviaanopensystemoraclosedsystem.Racewaypondsarethemostcommerciallyusedopensystemforgrowingalgae.Photobioreactorsareaclosedsystemforalgaecultivation.BothracewaypondsandphotobioreactorsaredescribedbyChisti(2007).Twosystemsareconsideredinthiswork:theuseofanopenpondsystemversustheBio-Kingsystem(CleanTech
2008)thatusesareactortocultivatealgae.TheBio-KingprocessisutilizedbyacompanyinTheNetherlands.Methodsforharvestingincludecentrifugation,?ltration,and?occulation.Centrifugationisexpensivebutalsooneofthemosteffectivewaystoharvestalgae.TheAlfaLavalPXseriescentrifugeswillbeusedtoharvestthealgae.Centrifugationwillresultinthealgaebeing30%solidwith70%moisturecontent.Asaresult,furtherdryingisrequired.
Dryingisconsideredtobethemostenergyintensivepartofthisprocess.Therearemanywaystodrythewetpasteslurrythatcomesoutofthecentrifuge.Asmentionedtheslurrycontains30%solidswiththeremaining70%water.Totryandsaveonenergycostsforthisprocess,thedryingwillbedoneusingexcess?uegas.
Extractionisthe?nalstepintheprocessingofalgaeforuseinbiodieselproduction.Algaloilcanbeextractedeitherphysically,chemicallyorboth.Anexpeller/presscanbeusedtophysicallyextractalgaloil.TheBK-oilpressiscapableofprocessing20kg/handwillbeusedforthisstudy.
Chlorellaisanalgalspeciesthatcontainsanywherefrom29to32%lipids(oilcontent).ForthisstudyitisassumedthatChlorellaisabout30%oilandforsensitivityanalysispurposes,thecostofproducingalgaloilassuming50%oilcontentwillalsobeevaluated.Costofproducingalgaloil
AnanalysiswasconductedassumingaprocessthatutilizedtheBio-KingBioreactorforgrowingthealgae,centrifu-gationforharvesting,excess?uegasfordrying,andtheBio-Kingoilpressforextraction.Economicandsensitivityanalyseswereconductedforthisprocessandusedforestimatingarangeofcostsforproducingoilfromalgae.Speci?cally,twofactorswerevaried:oilcontentinthealgaeandperformance.Twooilcontentsareconsidered:30and50%(drybasisoilinalgae).Thesecondfactoristheperformanceofthedryingandextractionunits.Forthehigh-performancecase,lowcostofelectricity($0.05/kWh),highproduction(100ton/dayplant),andtheuseofheatintegrationindryingusingthehot?uegaseswereassumed.Forthelow-performancecase,highcostofelectricity($0.20/kWh),lowproduction(1ton/day),andnoheatintegrationfordryingwasassumed.Thecost
内容需要下载文档才能查看123
242
Table2Estimatedcostsforproducingalgaloil
OilcontentUnits
30%
50%Lowperformance1.140.63$/lbHighperformance0.210.07$/lbAverage
0.68
0.35
$/lbestimatesarepresentedinTable2.Thesecostsareusedlaterintheeconomicanalysisoftheproductionofbiodiesel.
Biodieselprocessdescription
MiaoandWu(2006)haveshownthataspeciesofChlo-rella(Chlorellaprotothecoides)canbeusedtoproducebiodieselthatmeetsASTMstandards.Themicroalgaeweregrownheterotrophicallytoincreasetheoilcontentfrom14.6%dryweightto55.2%dryweight.Acidtransesteri?cationwasusedsincetheacidvalueforthealgaloilwasreportedas8.97mgKOH/g.Thebiodieselyieldwasapproximately70%at50°Candconditionsof60%H2SO4catalyst,5hreactiontime,160rpm,9.12gmicroalgaloil,and30–1methanoltooilratio(MiaoandWu2006).
Thedesign,integration,andeconomicassessmentoftheprocessarebasedontheprocedureshowninFig.2.Thisapproachisbasedonwell-establishedproceduresintheareasofprocesssynthesis,simulation,andintegration.Inthisworkthealgaloilistransesteri?edtobiodieselinacontinuousprocess.Biodieselcanbeproducedbyoneofthreecommonroutes.Theyare:acidcatalyzedtrans-esteri?cation,basecatalyzedtransesteri?cationoracidcatalyzedesteri?cationoffeedstocktofattyacidsandthentoalkylesters(NBB2008).Basecatalyzedtransesteri?-cationisthewell-establishedmeansofprocessingbiodieselandtheoverwhelmingoptionusedinindustryforeco-nomicandtechnicalreasons.Rashidetal.(2008)producedmethylestersfromsun?oweroilutilizingNaOHcatalystat1wt%concentrationina6:1methanoltooilratioat60°Catyieldsof97.1%.Georgogiannietal.(2008)reportedmethylesteryieldsfromtheprocessingofsun?oweroilof90%forconditionsof60°C,7:1methanoltooilmolarratioand1wt%NaOHascatalyst.Intheresultsanddiscussionitwaslaterstatedthat‘‘thehighestconversiontoester(93–98%)wasobservedataratioof6:1’’(Georgogiannietal.2008).RashidandAnwar(2008)foundthatbiodieselcouldbeproducedfromsaf?oweroilwithyieldsupto98%forbase-catalyzedtransesteri?cationutilizingsodiummeth-oxidecatalystat1wt%concentration,60°C,and6:1methanoltooilratioandyieldsofabove90%couldbe
123
G.Pokoo-Aikinsetal.
achievedforthesameconditionswiththeexceptionoftheuseofNaOHasacatalyst.Mekaetal.(2007)alsosyn-thesizedbiodieselfromsaf?oweroilandfoundthatat60°Cfor6:1methanoltooilratioand1wt%NaOHcatalyst,yieldof96%couldbeobtained.LeungandGuo(2006)performedexperimentsutilizingneatcanolaoilandusedfryingoilandfoundthatforexperimentsexploringdif-ferentparameters,atemperatureof60°Cwasoptimumforareactiontimeof20minusedfryingoil,thatestercontentwashighest(98%)forcanolaoilforanalcoholtooilratioof6:1(correspondingtoayieldof94%)andthatforthethreealkalicatalystexploredsodiumhydroxidewasthecheapestandhadanoptimumconcentrationof1.0forneatcanolaoiland1.1wt%forusedfryingoil.Foonetal.(2004)inexploringthekineticsofthetransesteri?cationofpalmoil,performedexperimentsutilizingbase-catalyzedtransesteri?cationandfoundthatformationofmethylesterswasfastestforNaOHat60°Cfortheparametersexplored.Conversionsabove97%werereported.
内容需要下载文档才能查看Leevijit
Designandanalysisofbiodieselproductionfromalgaeetal.(2008)utilizedalkalicatalyzedtransesteri?cationina6-stagereactortoafattyacidmethylesterproductfrompalmoil.NaOHwasusedat60°Cinamethanoltooilratioof6:1.Gerpenetal.(2004)describesthevariouspossibleroutesforbiodieselproductionincludingalkali-transesteri?cation.
Forthisreason,base-catalyzedtransesteri?cationisusedinthisinvestigation.Pretreatmentisrequiredforfeedstockwithhighfreefattyacid(FFA)content(i.e.greaterthan1%,suchaswastecookingoils)aswellasfeedstockwithsubstantialamountsofimpurities(suchassomealgaloils).FeedstockwithFFAcontentof1wt%orlessaregenerallyrequiredforbase-catalyzedtransesteri?cation.ThealgaloilusedfortheprocessingofbiodieselinthisworkisassumedtohaveonlytraceamountsofimpuritiesandtohaveFFAcontentof0.05wt%thereforenopretreatmentisrequired.
Ingeneral,thebiodieselprocessinthisworkconsistsofsevensections:?Feedstockcomposition
?Two-stagetransesteri?cation?FAMEandglycerolseparation?Methanolrecovery?Alkaliremoval
?Waterwashing(FAMEpuri?cation)?
Glycerolpuri?cation
Feedstockcomposition
ThefeedstockinthisworkisalgaloilfromChlorellasp.andischaracterizedintermsofthecompositionoftheindividualfattyacidsandtriglycerides.TheFFAcontentisassumedtobe0.05wt%andthuspretreatmentisnotnecessary.BasedonthedatapresentedbyDunstanetal.(1992)forChlorellasp.(CS-195),thefattyacidcompo-sitionisdistributedsuchthatthetotalweightpercentis0.05.Fortheremaining99.95wt%,thesamedata(Dunstanetal.1992)aredistributedsuchthatitencom-passesthetriglyceridecomposition.Forsimpli?cation,eachtriglycerideisrepresentedascontainingthreeiden-ticalcomponentfattyacids,althoughinrealitynumerouspossiblecombinationsexistforthefattyacidscomprisingeachtriglyceride.
SincetheASPENPlussimulationsoftwareonlyhasthethermodynamicdataandotherinformationforalimitednumberoffattyacidsandthecorrespondingtriglyceridesandmethylestersthatarefoundinplantoils,fatsandalgaloils(MyintandEl-Halwagi2009),mostofthecomponentsofthealgaloilfeedstockwereenteredmanuallyusingtheuser-de?nedmethodandthestructuresofeachcompoundwereconstructedusingISISsoftware.
243
Two-stagetransesteri?cation
Theoverallreactionbetweenthetriglycerides(algaloil)andmethanolisgivenby:
OO ==H2CO
C
R1
H2C
OH
C
R1
OO Catalyst
==R2
+ 3 CH3OH
OH
+
C
R2
OO
==H2R3
H2OHC
R3
TriglycerideMethanol
GlycerolFattyAcidAlkylEster
Consequently,onemoleculeofeachtriglycerideinthealgaloilreactswiththreemoleculesofmethanoltoproducethreemoleculesofmethylesters,thebiodie-selproduct,andonemoleculeofglycerol(Gerpenetal.2004).
Basedonseveralstudiesofalkali-catalyzedtranseste-ri?cation,thereactionwillbecarriedoutatthetemperatureneartheboilingpointofthealcohol(60°Cformethanol).Amolarratioof6:1,alcohol:oil,isalsocon?rmedtobetheoptimalratiobynumerousstudies(MaandHanna1999;Tapasvietal.2005;Meheretal.2006;MyintandEl-Halwagi2009).Inthisstudy,thetemperatureof60°C,methanolasthealcohol,amolarratioof6:1methanoltooil,andNaOHasthebasecat-alystaretheconditionsusedasaresultofcomprehensiveliteraturereviewmentionedabove‘‘Biodieselprocessdescription’’.
Inthe?rstreactor,sodiumhydroxidewithaconcen-trationof1.0wt%ofthefeedalgaloilwasused.TheconcentrationofNaOHfortheunreactedoilsuggestedinpatentdocumentsbyWimmer(1995)andTanakaetal.(1981)forthesecondreactoris0.2wt%ofinletoils.Fortheprocesswhere97.7%conversionisassumedthrougheachreactor,noadditionalNaOHisneededinthesec-ondreactor.Fortheprocesswhere70%conversionisassumedthrougheachreactor,additionalNaOHthatisonly0.14wt%ofinletoilsisneededinthesecondreactorasaresultofmassbalancecalculations,tobringthetotalNaOHto1.0wt%oftheinlettothesecondreactor.Thepurityofalgaloilisassumedtobe99.95wt%whiletheFFAcontentwasassumedtobe0.05wt%.
Inordertoincreasetheconversionofthealgaloil,twotransesteri?cationreactionsareconductedinsequence.ConversionoffeedstockhavebeendocumentedbyTanakaetal.(1981)toreachupto99.5wt%usingthistwo-stepprocess.Inthiswork,theconversionissettothesamepercentineachreactor.Inthe?rstscenario,theconversionthrougheachreactorissetat97.7%andinthesecondscenariotheconversionthrougheachreactorissetat70%.Thereactionproductsbiodieselandglycerol
123
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 日本自卫队的基层管理教育
- 合伙企业报销制度
- 供应连管理 第一章 供应链
- 车管所业务知识
- 管理学基础知识
- 独立品牌在压力下成长_邓纯雅
- 广告管理内容和政府管理的实现
- 031 药品质量查询和质量投诉管理制度
- 饭堂绩效奖
- 后发者如何实现快速追赶_一个二次商业模式创新和技术创新的共演模型
- 应急管理体系信息化建设研究
- 维鼎合伙人加盟说明书
- 创业管理-袁岳
- 应对突发事件的资源整合模式研究
- 浅谈知识经济时代图书馆管理资源建设
- 公司车队管理规定修改板
- 拧干毛巾上的最后一滴水——《丰田式成本管理》读后感
- 管理中心顾客满意度员工评比标准
- 5S推行手册
- 6.40B.会员平台会员管理制度
- O'Park园区在线 中国领先的O2O园区运营平台
- 工装购买方案
- 节约厂用电的管理规定
- 各种单据时间
- 小城镇
- 药品零售企业许可管理须知
- 上学堂软件应用之畅捷通T3标准版10.8.2视频介绍
- 格力的企业经营哲学
- 捕捉美丽
- 渤海商品交易所现货融资制度介绍
网友关注视频
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 七年级英语下册 上海牛津版 Unit3
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 人教版二年级下册数学
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T1406126
- 外研版英语三起6年级下册(14版)Module3 Unit2
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 第五单元 民族艺术的瑰宝_16. 形形色色的民族乐器_第一课时(岭南版六年级上册)_T3751175
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 北师大版数学四年级下册3.4包装
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
- 化学九年级下册全册同步 人教版 第22集 酸和碱的中和反应(一)
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 三年级英语单词记忆下册(沪教版)第一二单元复习
- 第五单元 民族艺术的瑰宝_15. 多姿多彩的民族服饰_第二课时(市一等奖)(岭南版六年级上册)_T129830
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 第4章 幂函数、指数函数和对数函数(下)_六 指数方程和对数方程_4.7 简单的指数方程_第一课时(沪教版高一下册)_T1566237
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 二年级下册数学第三课 搭一搭⚖⚖
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 沪教版八年级下册数学练习册一次函数复习题B组(P11)
- 北师大版数学四年级下册第三单元第四节街心广场
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理