运行优化Word
EMSELEnvironmental Management Systems Engineering Lab.
BIOMATHDepartment of Applied Mathematics, Biometrics and Process Control
Optimizing Biological Nutrient Removal Processes (EMSEL)
(2007 3 9 )EMSEL, Kyung Hee Univ.(ckyoo@khu.ac.kr or ChangKyoo.Yoo@biomath.ugent.be)
Presentation Review of Theory – Nitrification – Denitrification – Phosphorus Removal Optimization for nutrient removal – Nitrification Optimization – Denitrification Optimization Systematic optimization protocol for N and P removal – Case study 1 : SBR, Belgium – Case study 2 : Haaren, carrousel, Netherlands Problems and Troubleshooting (?)ChangKyoo Yoo - 2
References1.Jeanette A. Brown, P.E., DEE, (Executive Director SWPCA, CSWEA)- Optimizing Biological Nitrogen Removal Processes, USA 2.Dean Pond, Black Veatch (WWTP Operators School)Biological Wastewater Treatment Operators School, USA 3.Kim J.K, University of Wisconsin Madison, Biological Nutrient Removal Theories and Design, USA 4.Tao Jiang, BIOMATH , Belgium, UNESCO-IHE, Calibrating a Side-stream Membrane Bioreactor using ASM1, Belgium 5. Henze, DTU, Activated Sludge Model 1,2,2d,3, Denmark 6.Peter A. Vanrolleghem, Laval Univ., Optimal but robust N and P removal in SBRs, Canada
ChangKyoo Yoo - 3
Advanced Treatment Systems
What are the effects of N and P in receiving waters?
ChangKyoo Yoo - 4
What are the effects of N and P in receiving waters? Increases aquatic growth (algae) Increases DO depletion Causes NH4 toxicity Causes pH changes
ChangKyoo Yoo - 5
Nitrogen Removal Purpose– Reduce effluent N (ammonia and nitrates) – Biological or chemical – Reduce nutrient load on stream – Reduce algae growth – Reduce oxygen depletion
ChangKyoo Yoo - 6
Why is it necessary to treat the forms of nitrogen? Improve receiving stream quality Increase chlorination efficiency Minimize pH changes in plant Increase suitability for reuse Prevent NH4 toxicity Protect groundwater from nitrate contamination
ChangKyoo Yoo - 7
What are the forms of nitrogen found in wastewater? TKN = 40% Organic + 60% Free Ammonia Typical concentrations: Ammonia-N = 10-50 mg/L Organic N = 10 – 35 mg/L No nitrites or nitrates Forms of nitrogen: Organic N TKN Ammonia Total Nitrite N Nitrate
ChangKyoo Yoo - 8
Why is it sometimes necessary to remove P from municipal WWTPs? Reduce phosphorus, which is a key limiting nutrient in the environment Improve receiving water quality by:– Reducing aquatic plant growth and DO depletion – Preventing aquatic organism kill
Reduce taste and odor problems in downstream drinking water supplies
ChangKyoo Yoo - 9
Advanced Treatment SystemsIdentify and explain the objectives of the following advanced treatment systems:– Further removal of organics – Further removal of suspended
solids – Nutrient removal (N and P) – Removal of dissolved solids
ChangKyoo Yoo - 10
Advanced Treatment Systems
How is N removed or altered by conventional secondary (biological) treatment?
ChangKyoo Yoo - 11
Nitrification
ChangKyoo Yoo - 12
Nitrification Oxidation of ammonia nitrogen to nitrite nitrogen by nitrosamonas group:– NH4+ + O2 2H+ + NO2-
Oxidation of nitrite nitrogen by nitrobacter group:– NO2- + O2 NO3-
ChangKyoo Yoo - 13
Nitrification NH4+ Nitrosomonas NO2 NO2- Nitrobacter NO3 Notes:– – – – Aerobic process Control by SRT (4 + days) Uses oxygen 1 mg of NH4+ uses 4.6 mg O2 Depletes alkalinity 1 mg NH4+ consumes 7.14 mg alkalinity – Low oxygen and temperature = difficult to operateChangKyoo Yoo - 14
Un-aerated Bioreactor (Anoxic Zone)
Primary EffluentAnoxic
Nitrate RecycleAerobic
RAS WAS
ChangKyoo Yoo - 15
Characteristics of an Un-aerated Bioreactor Anoxic Microorganisms– Facultative heterotrophic-use carbon for the formation of new biomass – Use nitrate/nitrite instead of oxygen – Oxygen is preferred
ChangKyoo Yoo - 16
Nitrifier Minimum Aerobic SRT Varies with Temperature.9 8 7 6 5 4 3 2 1 0 10
Minimum SRT (Days)
Nitrification
No Nitrification
15
20 Temp (Deg Cent)
25
30
ChangKyoo Yoo - 17
Effective Nitrification
Achieved by: Effective nitrification – Adequate Aerobic SRT Temperature – Sufficient Oxygen Transfer Capacity Maintain a DO of 2 mg/l at peak loadings – pH 6.5, preferably 7 Accomplished by sufficient alkalinity (Effluent concentration at least 50 mg/l – No inhibitory materials
ChangKyoo Yoo - 18
Nitrification Optimization Summary Test nitrification rate occasionally Select appropriate SRT Keep DO at 2 mg/l Keep pH about neutral (optimal 7.5 to 8.5) Provide sufficient alkalinity
ChangKyoo Yoo - 19
Denitrification
ChangKyoo Yoo - 20
Denitrification
Using methanol as carbon source: 6 NO3- + 5 CH3OH N2 + 5 CO2 + 7 H2O + 6 OH Using an endogenous carbon source: C5H7NO2 + 4.6 NO32.8 N2 + 5 CO2 + 1.2 H2O + 4.6 OH-
ChangKyoo Yoo - 21
Denitrification NO3- denitrifiers (facultative bacteria) N2 gas + CO2 gas Notes:– Anoxic process – Control by volume and oxic MLSS recycle to anoxic zone – N used as O2 source = 1 mg NO3- yields 2.85 mg O2 equivalent – Adds alkalinity 1 mg NO3- restores 3.57 mg alkalinity – High BOD and NO3- load and low temperature = difficult to operate
ChangKyoo Yoo - 22
Denitrification with Supplemental CarbonMethanol or other carbon source
Primary Effluent
Nitrate Recycle
RAS WAS
ChangKyoo Yoo - 23
Denitrification is Controlled by Mixed Liquor Recirculation.
90 80 70 60 50 40 30 20 10 0 0 100 200
Denitrification (%)
% Denit = R/(R+Q) * 100
300
400
500
Mixed Liquor Recirculation (%)
ChangKyoo Yoo - 24
Effective Denitrification
Size based on anoxic SRT– Typically 1 to 2 day
s depending on temperature
Effective Denitrification – Sufficient Anoxic Volume (Anoxic SRT) – Sufficient Carbon – Sufficient mixed liquor recirculation
ChangKyoo Yoo - 25
External Carbon Methanol Stoichiometry– 2.5 (NO3-N) + 1.5 (NO2-N) + 0.87 (DO) – Or, approximately 3 mg CH3OH/mg NO3-N – Requires 1 to 3 day SRT in secondary anoxic zone depending on temperature
Other carbon sources technically feasible but generally more expensive.
ChangKyoo Yoo - 26
Denitrification Optimization Summary Minimize DO in anoxic zone ( 0.2 mg/l) Have 2Q to 4 Q recycle capabilities Provide sufficient carbon (readily biodegradable COD) Maximize use of secondary anoxic zones
ChangKyoo Yoo - 27
Phosphorus
ChangKyoo Yoo - 28
Phosphorus Removal Purpose– – – – – Reduce effluent P Biological or chemical method Reduce nutrient load on stream Reduce algae growth Reduce oxygen depletion
Application / Mechanism– Biological – Chemical
ChangKyoo Yoo - 29
Phosphorus Removing MechanismPO 43-
Facultative bacteria Acetate plus Substrate fermentation products Anaerobic
Energy
Acinetobacter spp. (Phosphorus Poly-P removing PHB bacteria, slow grower)
Aerobic
EnergyBOD + O2
PHB Poly-P
PO 4
3-
+CO2 + H2O
New biomass
ChangKyoo Yoo - 30
Continued …
Phosphorus Removal Biological
Q
Anaerobic Zone
Aerobic Zone
Final Clarifier
Effl
P Release
P Luxury Uptake
RAS
WAS
P RemovalChangKyoo Yoo - 31
Continued …
Phosphorus Removal ChemicalPrimary Clarifier Aerobic Zone Final Clarifier Effl
Q
Chemical Coagulant
Chemical Coagulant
RAS
WAS P Removal
ChangKyoo Yoo - 32
Effective Phosphorus Removal Size based on SRT– Typically 7 to 10 days depending on temperature
Effective Denitrification – Sufficient Anaerobic Volume (Anaerobic SRT) – Sufficient influent carbon – Competition between denitrification and phosphorous removal bacteria Sensitive to influent carbon Unstable processChangKyoo Yoo - 33
/
ChangKyoo Yoo - 34
Guidelines for Biological Nutrient Removal (BNR) Process SelectionNitrogen Removal Four
Stage Bardenpho Process Modified Ludzack-Ettinger (MLE) Process
Phosphorus Removal Only A/O
Process
Nitrogen and Phosphorus Removal Five
Stage Bardenpho (Phoredox) Process University of Cape Town (UCT) Process Modified UCT Process Virginia Initiate Process (VIP)ChangKyoo Yoo - 35
Schematic Process Configuration for Optional OperationsMixed liquor recycle, rMixed liquor recycle, a Secondary clarifier Anaerobic Influent Effluent Sludge recycle, s Anoxic Aerobic
Phoredox process UCT process Modified UCT processChangKyoo Yoo - 36
Process Selection Based on TKN/COD ratio (Initial Screening)Nitrogen Removal TKN/COD
0.09: Bardenpho process TKN/COD 0.10: MLE process
Nitrogen and/or Phosphorus Removal TKN/COD
0.07 ~ 0.08: A/O,
A2/O, Phoredox process (modified Bardenpho) TKN/COD 0.12 ~ 0.14: UCT process TKN/COD 0.11: Modified UCT process
ChangKyoo Yoo - 37
Systematic optimization protocol for N and P removal
ChangKyoo Yoo - 38
Introduction WWTP are complex systems Complex models can help in:– – – – Understanding the processes Plant design Plant optimisation Plant control
In practice– Which model to choose? – How to calibrate the model? – How to optimize the processneed for calibration and optimization protocolChangKyoo Yoo - 39
Why Model-based Optimization ?Solving Problems for wwtp systemsSystem under study Optimized System
Experimenting Reality
Virtual RealityModel of the System
Simulate
Solution for the System
ChangKyoo Yoo - 40
The systematic optimisation protocol
Systematize and standardize the model-based optimisation using mechanistic models (ASM2d for N- P- removal) Objective oriented iterative protocol A grid of scenarios (full-factorial design) built on the basis of the degrees of freedom and the constraints of the SBR system Selection and calibration of a suitable model to describe the biological processes Simulation and evaluation of a multitude of scenarios Selection of the best scenario Implementation final evaluation
1. Objective(s) 2. Framework of the optimization 3. Model selection and calibration
4. Scenario analysis5. Evaluation of the results of scenarios 6. Implementation of the best scenario 7. Measurement campaign No Target reached? YesEND
ChangKyoo Yoo - 41
Plant Information
Necessary information for model calibration
Mass balance, Operating parameters (SRT, HRT, control)
Aeration Hydraulics
Model based w.w. characterizationFlowrates COD fractionation (SS, SF, XS, XI, SI)
Biomass characterizationKinetic, stoichiometric parameters Active biomass fractions
N, P fractions, TSSChangKyoo Yoo - 42
Biomass composition
Biomath calibration protocolStage II – Plant survey/data analysis Design data– Plant layout/configuration, volumes, pumps, aerators,...
Operational data– Flow rates, sludge recycle/waste, control strategies,...
Measured data– Influent/effluent characterisation (COD,TKN,PO4,NO3,...) – On-line measurements (DO,T,pH,...) – TSS (RAS and effluent), sludge age/production,...
Mass balances– Flow rate, sludge (including N P) – Important for data quality check (e.g. sludge age)ChangKyoo Yoo - 43
Case study (I) - SBR Developing a robust biological system– Detect the major sources of process disturbances as soon as possible – Useful to keep the sludge as stable as possible – Volume (80 L), SRT (10 d) and HRT (12 h), 6 hour cycle mode – Six on-line measurements (DO, ORP, pH, conductivity, temperature, weight)InfluentAnaerobi c + filling Aerobic Anoxic Aerobic Settling Draw
Concentratio n
Effluent
60ChangKyoo Yoo - 44
150
60
30
45
15
Cycle time (min)
Introduction
Both N P removal successfully demonstrated at lab-scale and full-scale SBR installations. SBR offers more flexibility in operation (compared to continuous systems) –a key aspect in process optimisation. A myriad of operating strategies to optimise nutrient removal performance in SBRs. Usually developed at lab- or pilot-scale only comparison of a few operating scenarios Increasingly, mathematical models (e.g. ASM1 for N-removal and ASM2d for N- P- removal) are used to search for the optimal operating scenario
ChangKyoo Yoo - 45
50
100
150 200 250 Time (min)
300
350
50
100
150 200 250 Time (min)
300
350
ChangKyoo Yoo - 46
Scenario analysis
Construction of grids of scenariosChoose a range and interval for the degrees of freedoms: SO-sp: [0.2, 0.4, 0.6, 0.8, 1,2] Vstep-feed: [0, 5, 10] TANB: [60, 70, 80] TAER: [130, 140, 150] Intermittent aeration frequency:[1, 2, 4, 8]
Full-factorial design of degrees of freedoms: total 648 scenarios Each scenario simulated for 30 days (3 X SRT)
ChangKyoo Yoo - 47
Scenario analysis
Formulation of grids of scenarios:
Configuration of intermittent aeration frequencies step-feed of influent ( )
reference
TANB Fill/anaerobic Aerobic react Anoxic react Settle Draw TAER TANX
TAER2
IAF1TS TD
TC
TANB Fill/anaerobic Aerobic react Anoxic react Settle Draw TAER/2 TANX/2 TAER/2 TANX/2
IAF2TAER2 TS TD TC
Scenario analysis
TANB Fill/anaerobic Aerobic react Anoxic react Settle Draw TANB Fill/anaerobic Aerobic react Anoxic react Settle Draw
IAF4TAER2 TS TD TC
IAF8TAER2 TS TD TC
ChangKyoo Yoo - 48
Evaluation of the scenarios
Effluent quality
Effluent quality of 648 scenarios were analysed, general conclusions: Increasing TANB improves P-removal but decreases Nremoval Increasing TAER slightly improves the nitrification but negative effect on denitrification. The SO-sp is the most critical/dictates the overall behaviour of the system. The step-feed has a positive effect on the denitrification. Increasing the intermittent aeration frequency (IAF) increases N P removal
ChangKyoo Yoo - 49
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 六级攻略
- 《共产党宣言》读后感
- 英国留学申请六大注意事项
- 新概念一 L1----L10
- 英语六级作文
- 新加坡留学物流
- 威斯敏斯特大学摄影硕士
- 新加坡留学问题
- 新加坡四大特色院校解析
- 新加坡留学自考
- Reason for Participate in Extreme sports
- 爱一行,干一行
- 2011年12月六级
- 华东理工大学体育选修课论文
- 社会实践报告评分标准
- 四级词汇i
- 北京学位英语专辑
- 全国大学英语四、六级考试考生守则
- 英语策略听力练习五步曲
- 中国学生英国留学毕业后留英选择仍有空间
- 人生六悟,看完豁然开朗
- 卡迪夫大学水利环境工程
- 100 Business English Topics
- 民族文化开发期末论文
- 经典短信
- 2008年兰州大学学生创新创业行动
- 英国签证语言考试重要变动:雅思考试用于签证申请
- 揭秘雅思阅读出题十规律:首尾是重点
- 新加坡留学住宿
- 新加坡留学签证费用
网友关注视频
- 沪教版八年级下册数学练习册21.3(3)分式方程P17
- 冀教版小学英语五年级下册lesson2教学视频(2)
- 苏科版数学七年级下册7.2《探索平行线的性质》
- 沪教版八年级下册数学练习册20.4(2)一次函数的应用2P8
- 三年级英语单词记忆下册(沪教版)第一二单元复习
- 外研版英语七年级下册module1unit3名词性物主代词讲解
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 北师大版小学数学四年级下册第15课小数乘小数一
- 8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 冀教版小学数学二年级下册第二单元《租船问题》
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 北师大版八年级物理下册 第六章 常见的光学仪器(二)探究凸透镜成像的规律
- 苏教版二年级下册数学《认识东、南、西、北》
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 外研版八年级英语下学期 Module3
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
- 北师大版数学四年级下册第三单元第四节街心广场
- 二年级下册数学第一课
- 七年级下册外研版英语M8U2reading
- 3月2日小学二年级数学下册(数一数)
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 二年级下册数学第二课
- 精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
- 七年级英语下册 上海牛津版 Unit3
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理