教育资源为主的文档平台

当前位置: 查字典文档网> 所有文档分类> > 互联网> 国外文献[4] Design_optimization_of_a_low-speed_fan_blade_with_s(1)

国外文献[4] Design_optimization_of_a_low-speed_fan_blade_with_s(1)

上传者:黄全荣
|
上传时间:2015-05-07
|
次下载

国外文献[4] Design_optimization_of_a_low-speed_fan_blade_with_s(1)

87

Designoptimizationofalow-speedfanbladewithsweepandlean

S-JSeo,S-MChoi,andK-YKim*

DepartmentofMechanicalEngineering,InhaUniversity,Nam-Gu,Incheon,RepublicofKorea

Themanuscriptwasreceivedon4January2007andwasacceptedafterrevisionforpublicationon22October2007.DOI:10.1243/09576509JPE410

Abstract:Thepresentworkperformsnumericaloptimizationfordesignofbladestackinglineforanaxial?owfanwithresponsesurfacemethodusingthree-dimensionalNavier–Stokesanalysis,andevaluatestheeffectsofsweepandleanontheperformanceofthefanblade.Rey-nolds-averagedNavier–Stokesequationsarediscretizedwith?nite-volumeapproximationsusingunstructuredgrids.Fourgeometricvariablesconcerningspanwisedistributionsofsweepandleanofbladestackinglinearechosenasdesignvariablesto?ndmaximumef?-ciency.Thecomputationalresultsshowgoodagreementswithexperimentaldata.Thetotalef?-ciencyissuccessfullyincreasedincomparisonwiththereferencefanbyoptimizingthree-dimensionalstackinglinewithsweepandlean.Couplingofsweepandleanalsoimprovesoff-designperformanceofthebladeremarkably.Keywords:designoptimization,fan,blade,sweep,lean

1INTRODUCTION

Thebladeshapes,whicharebeingusedinturboma-chinerysofar,hasbeendesignedmostlybyapplyingtwo-dimensionalstackingline,andtheperformancehasbeenimprovedsteadilybyminimizingthelosses.Theenergylossesduetobladetipleakage,?owseparation,andsecondary?owsarethemajorfactors,whichdeterioratetheperformance.Amongthenumerousattemptstoimprovetheperformancebyminimizingtheselosses,thestudies[1–6]oneffectsofthree-dimensionalstackinglineemployingsweepandleanonbladeperformancearenoticeable.Itwasreportedthatsweepandleanimproveef?-ciencyandalsostabilizetheperformancebycontrol-lingthelossesinturbomachinery.Forexample,Gallimoreetal.[3]introducedthree-dimensionalbladedesignsusingsweepandleaninanaxial?owcompressorrotor.Theyshowedthatthepositiveleanreducedahubcornerandtipclearancelossesexceptingnearthemid-spanregion.DentonandXu

*Correspondingauthor:DepartmentofMechanicalEngineering,InhaUniversity,253Yonghyun-Dong,Nam-Gu,Incheon402-751,RepublicofKorea.email:kykim@inha.ac.kr

JPE410#IMechE2008

[4]investigatedtheeffectsofsweepandleanontheperformanceofatransonicfan,andshowedthatthestallmarginwassigni?cantlyimprovedwiththeforwardsweptbladealthoughaverylittlechangeinthepeakef?ciencywasproducedbythebladesweeporlean.However,inspiteoftheseinterestsinthree-dimensionalbladedesign,thecouplingeffectsofsweepandleanontheperformanceoftur-bomachinerybladesarenotstillclear.

Recently,designoptimizationusingnumericaloptimizationtechniquecoupledwithNavier–Stokesanalysisisacceptedasanewtrendinturbomachinerydesign.Amongavarietyofoptimizationmethods,responsesurfacemethod(RSM)[7],asaglobaloptim-izationmethod,hasmanyadvantagesovergradient-basedmethods[7,8].Someworksonnumericaloptimizationofstackinglineofbladebasedonthree-dimensionalRANS(Reynolds-averagedNavier–Stokesequations)analysishavebeenperformed.AhnandKim[9]improvedperformanceofanaxial?owcom-pressorbyoptimizingskewedstackinglineofrotorbladeusingthree-dimensionalthin-layerNavier–StokesanalysisandRSM[7].

Inthecurrentstudy,theRSMusingthree-dimensionalRANSanalysisisappliedtothe

Proc.IMechEVol.222PartA:J.PowerandEnergy

88S-JSeo,S-MChoi,andK-YKim

aerodynamicdesignofanaxial?owfanusingastack-inglinethatintroducessweepandleantomaximizethe?owef?ciency.Theeffectsofsweepandleanontheperformanceofthefanarealsodiscussed.

2FLOWANALYSIS

ThecommercialsoftwareCFX5.7[10]isusedforthe?owanalysisinanaxial?owfan.Three-dimensionalsteadyincompressibleRANSequationsaresolved.Governingequationsarediscretizedusing?nite-volumeapproximations.Standardk–1turbulencemodelisusedasaturbulenceclosure.Andtheimplementationofwallboundaryconditionsintur-bulent?owiscompletedbytheuseofempiricalwallfunction.

Thereferencefan,whichisabouttobeoptimizedinthecurrentwork,isthattestedbyJangetal.[11].ThisfanhasNACA65bladesection,anditsmajorspe-ci?cationsarelistedinTable1.Oneoftheninebladesisselectedfornumericalanalysisthatusesperiodicconditions.Inthepresentedwork,tetrahedralunstructuredgridsystemisemployedforthegrids,andoptimumgridsystemhasbeenselectedaftergriddependencytestforthereferencefan.The?nesthybridmeshusedinthetestconsistsof6124648tetrahedronsalongwithfourlayersofin?ationcomprising405614prismsonthehub,shroud,andbladewallsforanoverallmeshsizeof6530262elements(1270824nodes).Severalothermesheswerealsotestedtoevaluatemeshindepen-dence:anoverallmeshsizeof1378211elements(1157801tetrahedrons/220410prisms)and1924461elements(1703733tetrahedrons/220728prisms)withfourlayersofin?ation,1266464elements(1156259tetrahedrons/110205prisms)and1763313(1652937tetrahedrons/110376prisms)withtwolayersofin?ation,and1248422elementsand886316elementswithtetrahedronsonly.Fromthistest,incomparisonwiththe?nestmeshwith6530262elements,meshindependenceisalmostachievedbythemeshwith1924461elements(417867nodes)withfourlayerofin?ation,andthereforethesimilarmeshsizesareusedforallothercalculations.Figure1showsanexampleofthegridsystemonthesurfacesofbladeandhub.Sincek–1turbulencemodelemployswallfunction

Table1

Speci?cationsofreferencefan

0.410.3

1000r/min287.5mm0.5268.8863.88

basedontheempiricallog-lawnearthewall,thegridpointsadjacenttothewallarearrangedtobelocatedintheregion,yþ¼50–150.Here,yþiswallcoordinatede?nedbyy(tw/r)1/2/n,wherey,tw,r,andnaredistancefromthewall,wallshearstress,?uiddensity,andkinematicviscosity,respectively.Uniformpro?lesareassumedattheinlet,andcon-stantpressuresareappliedattheexitboundary.Theworking?uidis208Cair.Toobtainacompletelyconvergedsolutionforthepresentanalysis,theCPUtimewasapproximately12hwithaPentium-IV,3.0GHzprocessor.33.1

NUMERICALOPTIMIZATIONResponsesurfacemethod

RSM[7]isaseriesofstatisticalandmathematicaltechniques;generationofdatabynumericalcompu-tationsorexperiments,constructionofresponsesur-facebyinterpolatingthedata,andoptimizationoftheobjectivefunctiononthesurface.Inthecurrentwork,theresponsesurfaceisapproximatedbyasecond-orderpolynomial.Todeterminethecoef?-cientsofthisresponsemodel,standardleast-squaresregressionisused.Toestimatethesigni?canceofeachindividualinthequadraticpolynomialcoef?-cient,analysisofvariance(ANOVA)[7]andregressionanalysisyieldameasureoftheuncertaintyinthecoef?cientstoincreasetheef?ciencyoftheresponsesurface.Inordertoreducethenumberofdataneededforconstructingresponsesurfaceandtoimprovetherepresentationofthedesignspace,D-optimaldesign[12]asthedesignofexperimentisusedforselectingdesignpoints.3.2

Objectivefunctionanddesignvariables

Theobjectivefunctionforthepresentoptimizationproblemisanef?ciencyde?nedasfollows

ðpt;outÀpt;inÞÁQ

tÁv

ð1Þ

Flowcoef?cient

Totalpressurecoef?cientRotorrotationfrequencyTipradiusHub–tipratio

InletangleatrotortipOutletangleatrotortip

whereptisthetotalpressure,andthesubscripts,inandex,respectively,indicateinletandexitofthefan.Qisthe?owrate,andtandvaretorqueandangularvelocity,respectively.

Sweepandleaninthestackinglineofthereferencefan[11]aretheshapevariablestobeoptimizedinthiswork.Sweep(g)andlean(d)anglesareshowninFig.2,andthede?nitionsfortheseanglesaresameasthoseusedbyDentonandXu[4].Fourvariablesofgt,gm,dtanddmareselectedasdesignvariables,whichindicatedegreesofsweepandleanattipandmiddleoftheblade,respectively.Forresponse

JPE410#IMechE2008

Proc.IMechEVol.222PartA:J.PowerandEnergy

Designoptimizationofalow-speedfanblade89

Fig.1Anexampleofcomputational

内容需要下载文档才能查看

grids

surface-basedoptimization,settinguptheexper-imentalrangesofdesignvariablesisveryimportant.Therefore,therangesofdesignvariablesweredeter-minedbypre-calculationssothatoptimumpointcanbelocatedintheexperimentaldomain.TherangesofdesignvariablesareshowninTable2.

4RESULTSANDDISCUSSIONS

Computationalresultsarevalidatedincomparisonwiththeexperimentaldata[11]inFig.3.Figure3comparesthecomputedtotalandstaticpressureriseswithexperimentaldata.InFig.3,solidanddottedlinesdenotetotalandstaticpressurerises,respectively,obtainedbytheprediction[11]basedonapproximatedanalysis,andblacktriangleisthetotalpressureriseobtainedbytheexperimentatthedesign?owrate.And,thesymbols,hollowrec-tangleandcircleindicatetotalandstaticpressure

risescomputedinthecurrentwork,respectively.Inthis?gure,discrepanciesarefoundinthelow?ow-rateregion,butcomputationalresultsagreewellwiththepredictedpro?lesaswellastheexperimentaldatanearthedesignpoint.Sincethepredictionmethods[11]arebasedonapproximatedtheoryof?uiddynamics,thereliabilityoftheresultsisloweredintheregionoflow?owcoef?cientswhereviscouseffectsaredominant.And,accuracyofthepresentcalculationisalsodeterioratedinthisregion,becausestandardk–1turbulencemodelgenerallydoesnotgivegoodresultsforseparated?ows,whichmayoccurasthestallpointisapproached.Thesearethemainreasonsforthediscrepanciesbetweenpre-dictedandcalculatedresults.

Todeterminethecoef?cientsinthepolynomial,31pointsforresponseevaluationsareselectedusingD-optimaldesignamong81fullfactorialpoints.Thevaluesofunknowncoef?cientsareobtainedwiththedataattheselectedpointsusingthecommercialstatisticssoftware,SPSS(statisticalpackageforthesocialsciences),whichisusedtoperformANOVAandregressionanalysisalongwithotherstatisticalanalysesforawidevarietyof?elds.Thereliabilityoftheresponsesurfaceisimprovedbyt

内容需要下载文档才能查看

-statistics

Table2

Variables

Rangesofdesignvariables

Lowerbounds20.0220.0320.0420.01

Upperbounds0.040.030.020.01

Fig.2De?nitionofsweepandlean

gtgmdtdm

JPE410#IMechE2008Proc.IMechEVol.222PartA:J.PowerandEnergy

90S-JSeo,S-MChoi,andK-YKim

Table4

Designvariable

Optimalvaluesofdesignvariables

Optimumsweeponly0.022920.00940.00000.0000

Optimumleanonly0.00000.00000.02702

内容需要下载文档才能查看

0.0003

Optimumsweepandlean0.038120.02200.032620.0030

gtgmdtdm

Fig.3

Comparisonofperformancecurvesbetweenexperimentandcomputationforthereference

内容需要下载文档才能查看

fan

andadjustedR2method.AsaresultofANOVAandregressionanalysisforpresentsurface,thevalueofadjustR2is0.950,whichmeanstheresponsesurfaceisreliable.Theoptimumpointontheresponsesur-facehasbeenfoundbyalinearprogrammingmethod.

ResultsofoptimizationandoptimalvaluesofdesignvariablesaresummarizedinTables3and4,respectively.Asamainresultofoptimization,showninTable3,theef?ciencyissuccessfullyincreasedby1.75percentfortheoptimumshape.Ef?ciencyhasnotbeenimprovedremarkablyassuggestedbyDentonandXu[4],andtheincrementisofthesimilarlevelthatcanbeexpectedfromthepreviousresults[4–6].

Theadditionaloptimizationsforthecaseswithsweeponlyandleanonly,respectively,usingtheobtainedresponsesurface,havebeencarriedouttoexaminetheeffectsofsweepandleanseparatelyontheef?ciencyasshowninTables3and4.Letopt-1,opt-2,andopt-3indicatetheoptimaincaseswithbothsweepandlean,sweeponly,andleanonly,respectively.Table4showsthatoptimumgtanddthavepositivevalues,butoptimumgmanddmarenegative.Thisagreeswellwiththepreviousresults[1–3,6]thatthebladeswithforwardsweeporfor-wardleanshowbetterperformancethanthebladeswithbackwardsweeporbackwardlean.

PerformancesobtainedbythenumericalanalysesfortheoptimumandreferenceshapesareshowninFig.4.Asaresultofoptimization,totalef?ciency

Table3Resultsofoptimizations

Ef?ciency(%)

Reference

OptimumwithsweepandleanOptimumwithsweeponlyOptimumwithleanonly

85.1086.8586.3586.43

Increment(%)21.751.251.33

isincreasedinneighbourhoodofthedesignpoint(w¼0.41).Inthecaseofopt-3,whereonlyleaniscon-sidered,theef?ciencycurvedoesnotdiffermuchfromthatofreferenceshapeovertheentire?owraterange(Fig.4(a)).However,incasesofopt-1andopt-2,wheresweepisapplied,theperformanceinlow?ow-rateregionisimprovedremarkably.Thus,highef?ciencydrivingisavailableinthewide?owrateregion,andthebestef?ciencypointmovestothelow?owrateregion.InFig.4(b),itisobviousthatsweepmakeslocationofpeakpressuretoshifttothelow?ow-rateregion.Incaseofopt-1,thecouplingofsweepandleanlowersthestaticpressurelargelyinmostofthe?owraterange,butproducesthehighestpeakpressureatthelowest?owrate,whereasincaseofopt-2sweepimprovestheperformanceinthelow?owrateregionwithoutchangingthepressureinhigh?owrateregion.

Fig.4

Comparisonofperformanceandef?ciencycurvesbetweenoptimumandreferencebladeshapes:(a)totalef?ciencyand(b)staticpressure

JPE410#IMechE2008

Proc.IMechEVol.222PartA:J.PowerandEnergy

Designoptimizationofalow-speedfanblade91

mass?owdistributioninspanwisedirection.Asiswellknown,leakage?owisgeneratedduetobladerotationinthetipclearanceregion.But,asshowninFig.6,theapplicationofleancausestheaxialvel-ocitytobecomepositiveinthisregion.Thisoffersmorestable?owcharacteristicsincomparisonwiththereferencecaseastheleakagevortexisreduced,andalsocontributestotheuniformspanwisedistri-butionof?ow.5

Fig.5

Comparisonoflocalef?ciencypro?lesbetweenoptimumandreferencebladeshapesattrailing

内容需要下载文档才能查看

edge

CONCLUSIONS

Localef?ciency(ht,local)distributionsatthetrailingedgeofbladewithchangesindynamicpressureinspanwisedirection,areshowninFig.5.Pressureand?uxesaremassaveragedateachspanwiselocation.Therefore,localef?ciencyindicateslocaltotalef?ciencyateachspanwiseposition.AsshowninFig.5,ef?ciencyreducesat85percentspaninthecasesofopt-1andopt-3whereleanisapplied.Especially,thereductionatthisspanwiselocationisnoticableincaseofopt-1wherebothsweepandleanareoptimized.However,itshouldbenotedthatthecouplingofsweepandleanincreasestheef?-ciencyremarkablybelow60percentspan,whichcausestheincreaseinoverallef?ciency.Thus,theeffectofthecouplingobviouslyistomakethespan-wisedistributionoflocalef?ciencymoreuniform.Thepeaklocalef?ciencynear85percentspanincasesofreferenceandopt-2,isrelatedtothesuddenincreaseinaxialvelocityatthislocationasshowninFig.6.However,axialvelocitydistributionsincasesofopt-1andopt-3donotshowthispeakvel-ocity,whichindicatesthatleansmoothesoutthe

Indesignofanaxial?owfan,sweep,andleanofbladestackinglineareoptimizedusingthree-dimensional?owanalysis.Thecomputationalresultsarevalidatedbycomparingpressureandvelocitycomponentswithexperimentaldata.Thefanef?-ciencyisincreasedby1.75percentcomparedwithreferencefanbyusingresponsesurfaceoptimizationmethod.Theperformanceisimprovedbysweepinthelow?owrateregion;highef?ciencyregionisextended,andstallpointisshiftedtolow?owrateside.Couplingofsweepandleanenhancestheper-formance,butreducesthestaticpressureneardesignpoint.Thecouplingisalsoeffectivetomakethespanwisedistributionoflocalef?ciencymoreuniform.Thisisrelatedtothefactthatleansmoothesoutthemass?owdistributioninspanwisedirectionbysuppressingtheleakagevortex.ACKNOWLEDGEMENTS

TheauthorsthankDrChoon-ManJang,seniorresearcherofKoreaInstituteofConstructionTech-nologyforhisvaluableadvice.Thecurrentworkwassupportedbycentreforunderground?reandenvironmentresearch,andalsosupportedpartlybyKISTIunder‘TheEighthStrategicSupercomputingSupportProgramme’.

REFERENCES

1Sasaki,T.andBreugelmans,F.Comparisonofsweepanddihedraleffectsoncompressorcascadeperform-ance.ASMEJ.Turbomach.,1998,120,454–464.

2Wadia,A.R.,Szucs,P.N.,andCrall,D.W.Innerwork-ingsofaerodynamicssweep.ASMEJ.Turbomach.,1998,120,671–682.

3Gallimore,S.J.,Bolger,J.J.,Cumpsty,N.A.,Taylor,M.J.,Wright,P.I.,andPlace,J.M.M.Theuseofsweepanddihedralinmultistageaxial?owcompressorblad-ing–partI:universityresearchandmethodsdevelop-ment.ASMEJ.Turbomach.,2002,124,521–532.

4Denton,J.D.andXu,L.Theeffectsofleanandsweepontransonicfanperformance.InProceedings

内容需要下载文档才能查看

of

Proc.IMechEVol.222PartA:J.PowerandEnergy

Fig.6

Comparisonofaxialvelocitydistributionsforoptimumandreferencebladeshapeattrailingedge

JPE410#IMechE2008

版权声明:此文档由查字典文档网用户提供,如用于商业用途请与作者联系,查字典文档网保持最终解释权!

下载文档

热门试卷

2016年四川省内江市中考化学试卷
广西钦州市高新区2017届高三11月月考政治试卷
浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
广西钦州市钦州港区2017届高三11月月考政治试卷
广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
广西钦州市高新区2016-2017学年高二11月月考政治试卷
广西钦州市高新区2016-2017学年高一11月月考政治试卷
山东省滨州市三校2017届第一学期阶段测试初三英语试题
四川省成都七中2017届高三一诊模拟考试文科综合试卷
2017届普通高等学校招生全国统一考试模拟试题(附答案)
重庆市永川中学高2017级上期12月月考语文试题
江西宜春三中2017届高三第一学期第二次月考文科综合试题
内蒙古赤峰二中2017届高三上学期第三次月考英语试题
2017年六年级(上)数学期末考试卷
2017人教版小学英语三年级上期末笔试题
江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
四川省简阳市阳安中学2016年12月高二月考英语试卷
四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
安徽省滁州中学2016—2017学年度第一学期12月月考​高三英语试卷
山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷

网友关注视频

沪教版八年级下册数学练习册一次函数复习题B组(P11)
《空中课堂》二年级下册 数学第一单元第1课时
三年级英语单词记忆下册(沪教版)第一二单元复习
苏科版数学 八年级下册 第八章第二节 可能性的大小
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣.mp4
苏科版八年级数学下册7.2《统计图的选用》
北师大版数学 四年级下册 第三单元 第二节 小数点搬家
精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
【获奖】科粤版初三九年级化学下册第七章7.3浓稀的表示
沪教版牛津小学英语(深圳用) 四年级下册 Unit 8
19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
冀教版小学数学二年级下册第二单元《余数和除数的关系》
外研版英语三起6年级下册(14版)Module3 Unit1
沪教版八年级下册数学练习册21.3(2)分式方程P15
二年级下册数学第一课
沪教版八年级下册数学练习册21.4(1)无理方程P18
冀教版英语五年级下册第二课课程解读
北师大版数学四年级下册3.4包装
七年级英语下册 上海牛津版 Unit3
冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
外研版英语七年级下册module3 unit1第二课时
冀教版小学数学二年级下册第二周第2课时《我们的测量》宝丰街小学庞志荣
8.练习八_第一课时(特等奖)(苏教版三年级上册)_T142692
【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
七年级英语下册 上海牛津版 Unit9
人教版历史八年级下册第一课《中华人民共和国成立》
沪教版牛津小学英语(深圳用)五年级下册 Unit 1
河南省名校课堂七年级下册英语第一课(2020年2月10日)
冀教版小学数学二年级下册第二单元《有余数除法的整理与复习》