Perfectly matched layer as an absorbing boundary condition for the linearized Euler equations in
上传者:秦龙|上传时间:2015-05-07|密次下载
Perfectly matched layer as an absorbing boundary condition for the linearized Euler equations in
JOURNALOFCOMPUTATIONALPHYSICS
ARTICLENO.144,213–234(1998)CP985997
PerfectlyMatchedLayerasanAbsorbing
BoundaryConditionfortheLinearizedEuler
EquationsinOpenandDuctedDomains
ChristopherK.W.Tam,?LaurentAuriault,?andFrancescoCambuli?
?DepartmentofMathematics,FloridaStateUniversity,Tallahassee,Florida32306-4510;and?Dipartimento
diIngegneriaMeccanica,UniversitadegliStudidiCagliari,Piazzad’Armi,09123,Cagliari,Italy
E-mail:tam@math.fsu.edu
ReceivedOctober30,1997;revisedApril6,1998
Recently,perfectlymatchedlayer(PML)asanabsorbingboundarycondition
hasfoundwidespreadapplications.Theideawas?rstintroducedbyBerengerfor
electromagneticwavescomputations.Inthispaper,itisshownthatthePMLequations
forthelinearizedEulerequationssupportunstablesolutionswhenthemean?owhasa
componentnormaltothelayer.Tosuppresssuchunstablesolutionssoastorenderthe
PMLconceptusefulforthisclassofproblems,itisproposedthatarti?cialselective
dampingtermsbeaddedtothediscretizedPMLequations.Itisdemonstratedthat
withaproperchoiceofarti?cialmeshReynoldsnumber,thePMLequationscan
bemadestable.Numericalexamplesareprovidedtoillustratethatthestabilized
PMLperformswellasanabsorbingboundarycondition.Inaductedenvironment,
thewavemodesaredispersive.Itwillbeshownthatinthepresenceofamean
?owthegroupvelocityandphasevelocityofthesemodescanhaveoppositesigns.
ThisresultsinabandoftransmittedwavesinthePMLtobespatiallyamplifying
insteadofevanescent.Thusinacon?nedenvironment,PMLmaynotbesuitableas
c1998AcademicPressanabsorbingboundaryconditionunlessthereisnomean?ow.??
1.INTRODUCTION
Recently,Berenger[1,2]succeededinformulatinganabsorbingboundaryconditionforcomputationalelectromagneticsthathastheunusualcharacteristicthatwhenanoutgoingdisturbanceimpingesontheinterfacebetweenthecomputationdomainandtheabsorbinglayersurroundingit,nowaveisre?ectedbackintothecomputationdomain.Inotherwords,alltheoutgoingdisturbancesaretransmittedintotheabsorbinglayerwheretheyaredampedout.Suchalayerhascometobeknownasaperfectlymatchedlayer(PML).
Sinceitsinitialdevelopment,PMLhasfoundwidespreadapplicationsinelasticwavepropagation[3],computationalaeroacoustics,andmanyotherareas.Hu[4]wasthe?rstto
213
0021-9991/98$25.00
c1998byAcademicPressCopyright??
Allrightsofreproductioninanyformreserved.
214TAM,AURIAULT,ANDCAMBULI
applyPMLtoaeroacousticsproblemsgovernedbythelinearizedEulerequations,linearizedoverauniformmean?ow.Hehassinceextendedhisworktononuniformmean?owandforthefullynonlinearEulerequations[5].FurtherapplicationsofPMLtoacousticsproblemsincludingwavemodesinductscanbefoundinthemostrecentworksofHuandco-workers[6,7].Inthesereferences,examplesareprovidedthatindicatethathighqualitynumericalsolutionscouldbefoundwithPMLusedasradiationorout?owboundaryconditions.
Inopenunboundeddomains,acousticwavesarenondispersiveandpropagatewiththespeedofsoundrelativetothelocalmean?ow.Insideaduct,thesituationiscompletelydifferent.Acousticwavesarerepeatedlyre?ectedbackbythecon?ningwalls.Forductswithparallelwalls,thecontinuousre?ectionoftheacousticwavesbythewallleadstotheformationofcoherentwavepatternscalledductmodes[8,9].Unliketheopendomain,ductmodesaredispersivewithphaseandgroupvelocitiesvarywithaxialwavenumber.Becauseofthedispersivenatureoftheductmodesmanyradiationboundaryconditionsthatworkwellinopendomainsareknowntobeinappropriateforductedenvironments.Forthisreason,Tam[10]inarecentreviewonnumericalboundaryconditionsforcomputationalaeroacousticssuggestedthattheboundaryconditionforaductedenvironmentberegardedasacategoryofitsown.
Therearethreeprimaryobjectivesinthiswork.First,weintendtoshowthatinthepresenceofamean?ownormaltoaPML,thestandardPMLequationsofthelinearizedEulerequationssupportunstablesolutions.EarlierTam[10]pointedoutthatthePMLequationswithmean?owhaveunstablesolutions.However,hedidnotshowthattheexistenceofinstabilitiesisduetothemean?owcomponentnormaltothelayer.Theoriginandcharacteristicsoftheseinstabilitiesareinvestigatedandanalyzed.Itisinterestingtomentionthatinhisearliestwork,Hu[4]reportedthathiscomputationencounterednumericalinstability.Butbyapplyingnumerical?ltering,hewasabletoobtainstablesolutions.Inlightofour?nding,webelievethatwhatHuencounteredwasnotinstabilityofhisnumericalschemebutthathisnumericalsolutioninadvertentlyexcitedtheintrinsicunstablesolutionofthePMLequations.NotdirectlyrelatedtotheinstabilityofthePMLequations,AbarbanelandGottlieb[11]recentlyanalyzedtheelectromagneticPMLequations.Theyconcludedthattheequationsareonlyweaklywell-posed.
Second,wewillshowthattheinstabilityisnotverystrong,namely,thegrowthratesaresmall.Alsotheinstabilitiesarecon?nedprimarilytoshortwaves.Itis,therefore,possibletosuppresstheinstabilitiesbytheadditionofarti?cialselectivedampingterms[12]tothediscretizedPMLequations.Itisimportanttopointoutthatarti?cialselectivedampingeliminatesmainlytheshortwavesandhasnegligibleeffectonthelongorthephysicalwaves.ThustheadditionofthesedampingtermsdoesnoteffecttheperfectlymatchedconditionsofthePML.
Third,wewillshowthataperfectlymatchedlayermaynotbesuitableasanabsorbingboundaryconditionforwavesinaducted?owenvironment.Themajordifferencebetweenacousticwavesinanopendomainandacousticwavesinsideaductisthatinanunboundedregionacousticwavesarenondispersivewhereasductmodesaredispersive.Itwillbeshownthatinthepresenceofamean?owthegroupandphasevelocityoftheductmodescanhaveoppositesigns.Becauseofthis,abandoftransmittedwaveswillactuallygrowspatiallyinsteadofbeingdampedinthePML.Inotherwords,thePMLequationsdonotdampthesewavemodesasabsorbingboundaryconditionoughttodo.Theexceptioniswhenthereisnomean?owintheduct.Inthisspecialcase,allthetransmittedwavesarespatiallydamped.
PMLFORLINEARIZEDEULEREQUATIONS215
InSection2,theuseofPMLforopendomainproblemsisdiscussed.ThestabilityofthePMLgoverningequationsisinvestigated.Itwillbeshownthattheadditionofdamp-ingtermstoformthePMLequationscanactuallycausethevorticityandacousticwavemodestobecomeunstable.ThesplittingofthevariablesinformulatingthePMLequationsleadstoahigherordersystemofequations.Thishighersystemsupportsextrasolutions.Theseextraorspurioussolutionsarefoundtobecomeunstablewhenthedampingcoef?cientislarge.NumericalexamplesareprovidedtoillustratethespreadoftheunstablesolutionfromthePMLbackintotheinteriorofthecomputationdomain.
InSection3,theeffectoftheadditionofarti?cialselectivedampingtermstothedis-cretizedPMLequationsisinvestigated.ItisshownthatwithanappropriatechoiceofmeshReynoldsnumber,theunstablesolutionsofthePMLequationscanbesuppressed.Numericalexamplesaregiventodemonstratetheeffectivenessofthemodi?edPMLasaradiation/out?owboundarycondition.
Section4dealswiththetheoryandapplicationofPMLtoductedinternal?owproblems.AneigenvalueanalysisiscarriedouttoshowtheexistenceofabandoffrequencyforwhichthePMLexertsnodampingontheacousticductmodes.ThesewavemodesactuallywouldgrowinamplitudeastheypropagatethroughthePML.Numericalresultsareprovidedtoillustratetheexistenceofthiskindofamplifyingductedacousticmodes.
2.OPENDOMAINPROBLEMS
LetusconsidertheuseofPMLasabsorbingboundaryconditionforthesolutionofthelinearizedEulerequations(linearizedoverauniformmean?ow)inatwo-dimensionalopendomainasshowninFig.1.Wewilluse??x=??y(themeshsize)asthelengthscale,a0x2(thesoundspeed)asthevelocityscale,
内容需要下载文档才能查看??asthetimescale,andρ0a0(whereρ0isthea0
FIG.1.TwodimensionalcomputationdomainwithPerfectlyMatchedLayersasboundaries.
216TAM,AURIAULT,ANDCAMBULI
meandensity)asthepressurescale.ThedimensionlessgoverningequationsinthePMLareformedbysplittingthelinearizedEulerequationsaccordingtothespatialderivatives.Anabsorptiontermisaddedtoeachoftheequationswithspatialderivativeinthedirectionnormaltothelayer.Forexample,forthePMLontherightboundaryofFig.1(notatthecorners)thegoverningequationsare[4]
???u1+σu1+Mx(u1+u2)+(p1+p2)=0?u2?+My(u1+u2)=0?v1?+σv1+Mx(v1+v2)=0?v2??+My(v1+v2)+(p1+p2)=0???p1+σp1+Mx(p1+p2)+(u1+u2)=0?p2??+My(p1+p2)+(v1+v2)=0,whereMxandMyarethemean?owMachnumbersinthexandydirections.σistheabsorptioncoef?cient.
Supposewelookforsolutionswith(x,y,t)dependenceintheformexp[i(αx+βy?ωt)].Itiseasyto?ndfrom(1)thatthedispersionrelationsofthePMLequationsare
??βMyαMx?1???2α2β2??=0βMyαMx?=0.(2)(3)(1)1?
Inthelimitσ→0,(2)and(3)becomethewell-knowndispersionrelationsoftheacousticandthevorticitywavesofthelinearizedEulerequations.
2.1.MeanFlowParalleltoPML
Dispersionrelations(2)and(3)behaveverydifferentlydependingonwhetherthereisanymean?ownormaltothePML.Whenthemean?owisparalleltothelayer,i.e.,Mx=0,thesolutionsarestable.Thisiseasytoseefrom(3)forthevorticitywave.Physically,ifthemean?owisparalleltothePML,thevorticitywavesinthecomputationdomain,beingconvectedbythemean?ow,cannotenterthelayerandhencewouldnotleadtounstablesolution.
ToshowthatforMx=0allthesolutionsof(2)arestable,asimplemappingwillsuf?ce.Rewrite(2)intheform
α2ω2=β2.F≡(ω?βMy)?22(4)
Figure2showstheimageoftheupper-halfω-planeintheFplane.Theupper-halfω-planeismappedintotheentireFplaneexceptfortheslitADC.Butsinceβ2isrealandpositive,
PMLFORLINEARIZEDEULEREQUATIONS
内容需要下载文档才能查看217
FIG.2.Theimageoftheupperhalfω-planeintheF-plane.
forsubsonicmean?owthepointβ2liesoutsidetheimage.Thusnovalueofωintheupper-halfω-planewouldsatisfyEq.(2)indicatingthatthereisnounstablesolution.
2.2.UnstableSolutionsofthePMLEquations
ForMx=0,thePMLequationssupportunstablesolutions.Itistobenotedthat,unliketheoriginaldispersionrelationoftheacousticwaves,Eq.(2)isaquadricequationinω.Ithastwoextrarootsinadditiontothetwomodi?edacousticmodes.Forsmallσ,thetwospuriousrootsaredampedbutoneofthemodi?edacousticrootsisunstable.Forlargerσ,numericalsolutionsindicatethatoneofthespuriousrootsbecomesunstable.Inanycase,theequationsplittingprocedureandtheadditionofanabsorptionterm,botharevitaltothesuppressionofre?ectionsattheinterfacebetweenthecomputationdomainandthePML,inadvertently,leadtoinstabilities.
Forsmallσ,therootsof(2)and(3)canbefoundbyperturbation.Let
(a)(a)(a)+σω1+σ2ω2+···ω(a)=ω0
(v)(v)(v)+σω1+σ2ω2+···,ω(v)=ω0(5)(6)
wheretherootsof(2)and(3)aredesignatedbyasuperscripta(foracousticwaves)andv
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 军训日记
- 广东省广州市2013年中学生法律知识竞赛高二级试题
- “礼尚国学_魅丽国韵”国学经典知识竞赛题库
- 湖南省第五届大学生物理竞赛试卷
- 省交通运输路线教育实践活动竞赛试卷
- 舞台话剧
- 2015高考现代文阅读答题技巧汇总
- 我们的海洋
- 2012年温州市高一化学竞赛试卷 (1)
- 江西省南昌市十所省重点中学命制2015届高三第二次模拟突破冲刺(二) 数学理 Word版含答案
- 高一数学竞赛
- 信息学奥赛初赛复习题
- 2015浙江省数学竞赛试题与答案
- 高二化学竞赛题
- 狼图腾读后感
- 2007广州市中学生高二法律知识竞赛
- “化学与生活”趣味知识竞赛初赛试题[1]
- 党的政策到我家
- 江西省南昌市十所省重点中学命制2015届高三第二次模拟突破冲刺(二) 数学文 Word版含答案
- 整理往届竞赛习题-线面积分
- 江西省南昌市十所省重点中学命制2015届高三第二次模拟突破冲刺(二) 文综政治 Word版含答案
- 江西省南昌市十所省重点中学命制2015届高三第二次模拟突破冲刺(二) 语文 Word版含答案
- 新安二高--------附件二
- 2014.5月高一竞赛题
- 水中品味成功人生
- 技能大赛与专业教学有效融合的实践研究
- 学习党的十八大报告知识竞赛试卷
- 高中物理竞赛讲义(完整版)
- 江西省南昌市十所省重点中学命制2015届高三第二次模拟突破冲刺(二) 理综生物 Word版含答案
- 江西省南昌市十所省重点中学命制2015届高三第二次模拟突破冲刺(二) 英语 Word版含答案
网友关注视频
- 二次函数求实际问题中的最值_第一课时(特等奖)(冀教版九年级下册)_T144339
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 4
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 冀教版小学数学二年级下册1
- 七年级英语下册 上海牛津版 Unit5
- 第12章 圆锥曲线_12.7 抛物线的标准方程_第一课时(特等奖)(沪教版高二下册)_T274713
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 2
- 3.2 数学二年级下册第二单元 表内除法(一)整理和复习 李菲菲
- 冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
- 精品·同步课程 历史 八年级 上册 第15集 近代科学技术与思想文化
- 沪教版八年级下册数学练习册21.4(1)无理方程P18
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 7
- 3月2日小学二年级数学下册(数一数)
- 人教版二年级下册数学
- 外研版英语七年级下册module3 unit2第一课时
- 8 随形想象_第一课时(二等奖)(沪教版二年级上册)_T3786594
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,湖北省
- 沪教版牛津小学英语(深圳用)五年级下册 Unit 1
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 10
- 外研版英语七年级下册module3 unit2第二课时
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,辽宁省
- 北师大版数学四年级下册3.4包装
- 【部编】人教版语文七年级下册《老山界》优质课教学视频+PPT课件+教案,安徽省
- 第8课 对称剪纸_第一课时(二等奖)(沪书画版二年级上册)_T3784187
- 沪教版牛津小学英语(深圳用) 六年级下册 Unit 7
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T502436
- 青岛版教材五年级下册第四单元(走进军营——方向与位置)用数对确定位置(一等奖)
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 7
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理