Perfectly matched layer as an absorbing boundary condition for the linearized Euler equations in
上传者:秦龙|上传时间:2015-05-07|密次下载
Perfectly matched layer as an absorbing boundary condition for the linearized Euler equations in
JOURNALOFCOMPUTATIONALPHYSICS
ARTICLENO.144,213–234(1998)CP985997
PerfectlyMatchedLayerasanAbsorbing
BoundaryConditionfortheLinearizedEuler
EquationsinOpenandDuctedDomains
ChristopherK.W.Tam,?LaurentAuriault,?andFrancescoCambuli?
?DepartmentofMathematics,FloridaStateUniversity,Tallahassee,Florida32306-4510;and?Dipartimento
diIngegneriaMeccanica,UniversitadegliStudidiCagliari,Piazzad’Armi,09123,Cagliari,Italy
E-mail:tam@math.fsu.edu
ReceivedOctober30,1997;revisedApril6,1998
Recently,perfectlymatchedlayer(PML)asanabsorbingboundarycondition
hasfoundwidespreadapplications.Theideawas?rstintroducedbyBerengerfor
electromagneticwavescomputations.Inthispaper,itisshownthatthePMLequations
forthelinearizedEulerequationssupportunstablesolutionswhenthemean?owhasa
componentnormaltothelayer.Tosuppresssuchunstablesolutionssoastorenderthe
PMLconceptusefulforthisclassofproblems,itisproposedthatarti?cialselective
dampingtermsbeaddedtothediscretizedPMLequations.Itisdemonstratedthat
withaproperchoiceofarti?cialmeshReynoldsnumber,thePMLequationscan
bemadestable.Numericalexamplesareprovidedtoillustratethatthestabilized
PMLperformswellasanabsorbingboundarycondition.Inaductedenvironment,
thewavemodesaredispersive.Itwillbeshownthatinthepresenceofamean
?owthegroupvelocityandphasevelocityofthesemodescanhaveoppositesigns.
ThisresultsinabandoftransmittedwavesinthePMLtobespatiallyamplifying
insteadofevanescent.Thusinacon?nedenvironment,PMLmaynotbesuitableas
c1998AcademicPressanabsorbingboundaryconditionunlessthereisnomean?ow.??
1.INTRODUCTION
Recently,Berenger[1,2]succeededinformulatinganabsorbingboundaryconditionforcomputationalelectromagneticsthathastheunusualcharacteristicthatwhenanoutgoingdisturbanceimpingesontheinterfacebetweenthecomputationdomainandtheabsorbinglayersurroundingit,nowaveisre?ectedbackintothecomputationdomain.Inotherwords,alltheoutgoingdisturbancesaretransmittedintotheabsorbinglayerwheretheyaredampedout.Suchalayerhascometobeknownasaperfectlymatchedlayer(PML).
Sinceitsinitialdevelopment,PMLhasfoundwidespreadapplicationsinelasticwavepropagation[3],computationalaeroacoustics,andmanyotherareas.Hu[4]wasthe?rstto
213
0021-9991/98$25.00
c1998byAcademicPressCopyright??
Allrightsofreproductioninanyformreserved.
214TAM,AURIAULT,ANDCAMBULI
applyPMLtoaeroacousticsproblemsgovernedbythelinearizedEulerequations,linearizedoverauniformmean?ow.Hehassinceextendedhisworktononuniformmean?owandforthefullynonlinearEulerequations[5].FurtherapplicationsofPMLtoacousticsproblemsincludingwavemodesinductscanbefoundinthemostrecentworksofHuandco-workers[6,7].Inthesereferences,examplesareprovidedthatindicatethathighqualitynumericalsolutionscouldbefoundwithPMLusedasradiationorout?owboundaryconditions.
Inopenunboundeddomains,acousticwavesarenondispersiveandpropagatewiththespeedofsoundrelativetothelocalmean?ow.Insideaduct,thesituationiscompletelydifferent.Acousticwavesarerepeatedlyre?ectedbackbythecon?ningwalls.Forductswithparallelwalls,thecontinuousre?ectionoftheacousticwavesbythewallleadstotheformationofcoherentwavepatternscalledductmodes[8,9].Unliketheopendomain,ductmodesaredispersivewithphaseandgroupvelocitiesvarywithaxialwavenumber.Becauseofthedispersivenatureoftheductmodesmanyradiationboundaryconditionsthatworkwellinopendomainsareknowntobeinappropriateforductedenvironments.Forthisreason,Tam[10]inarecentreviewonnumericalboundaryconditionsforcomputationalaeroacousticssuggestedthattheboundaryconditionforaductedenvironmentberegardedasacategoryofitsown.
Therearethreeprimaryobjectivesinthiswork.First,weintendtoshowthatinthepresenceofamean?ownormaltoaPML,thestandardPMLequationsofthelinearizedEulerequationssupportunstablesolutions.EarlierTam[10]pointedoutthatthePMLequationswithmean?owhaveunstablesolutions.However,hedidnotshowthattheexistenceofinstabilitiesisduetothemean?owcomponentnormaltothelayer.Theoriginandcharacteristicsoftheseinstabilitiesareinvestigatedandanalyzed.Itisinterestingtomentionthatinhisearliestwork,Hu[4]reportedthathiscomputationencounterednumericalinstability.Butbyapplyingnumerical?ltering,hewasabletoobtainstablesolutions.Inlightofour?nding,webelievethatwhatHuencounteredwasnotinstabilityofhisnumericalschemebutthathisnumericalsolutioninadvertentlyexcitedtheintrinsicunstablesolutionofthePMLequations.NotdirectlyrelatedtotheinstabilityofthePMLequations,AbarbanelandGottlieb[11]recentlyanalyzedtheelectromagneticPMLequations.Theyconcludedthattheequationsareonlyweaklywell-posed.
Second,wewillshowthattheinstabilityisnotverystrong,namely,thegrowthratesaresmall.Alsotheinstabilitiesarecon?nedprimarilytoshortwaves.Itis,therefore,possibletosuppresstheinstabilitiesbytheadditionofarti?cialselectivedampingterms[12]tothediscretizedPMLequations.Itisimportanttopointoutthatarti?cialselectivedampingeliminatesmainlytheshortwavesandhasnegligibleeffectonthelongorthephysicalwaves.ThustheadditionofthesedampingtermsdoesnoteffecttheperfectlymatchedconditionsofthePML.
Third,wewillshowthataperfectlymatchedlayermaynotbesuitableasanabsorbingboundaryconditionforwavesinaducted?owenvironment.Themajordifferencebetweenacousticwavesinanopendomainandacousticwavesinsideaductisthatinanunboundedregionacousticwavesarenondispersivewhereasductmodesaredispersive.Itwillbeshownthatinthepresenceofamean?owthegroupandphasevelocityoftheductmodescanhaveoppositesigns.Becauseofthis,abandoftransmittedwaveswillactuallygrowspatiallyinsteadofbeingdampedinthePML.Inotherwords,thePMLequationsdonotdampthesewavemodesasabsorbingboundaryconditionoughttodo.Theexceptioniswhenthereisnomean?owintheduct.Inthisspecialcase,allthetransmittedwavesarespatiallydamped.
PMLFORLINEARIZEDEULEREQUATIONS215
InSection2,theuseofPMLforopendomainproblemsisdiscussed.ThestabilityofthePMLgoverningequationsisinvestigated.Itwillbeshownthattheadditionofdamp-ingtermstoformthePMLequationscanactuallycausethevorticityandacousticwavemodestobecomeunstable.ThesplittingofthevariablesinformulatingthePMLequationsleadstoahigherordersystemofequations.Thishighersystemsupportsextrasolutions.Theseextraorspurioussolutionsarefoundtobecomeunstablewhenthedampingcoef?cientislarge.NumericalexamplesareprovidedtoillustratethespreadoftheunstablesolutionfromthePMLbackintotheinteriorofthecomputationdomain.
InSection3,theeffectoftheadditionofarti?cialselectivedampingtermstothedis-cretizedPMLequationsisinvestigated.ItisshownthatwithanappropriatechoiceofmeshReynoldsnumber,theunstablesolutionsofthePMLequationscanbesuppressed.Numericalexamplesaregiventodemonstratetheeffectivenessofthemodi?edPMLasaradiation/out?owboundarycondition.
Section4dealswiththetheoryandapplicationofPMLtoductedinternal?owproblems.AneigenvalueanalysisiscarriedouttoshowtheexistenceofabandoffrequencyforwhichthePMLexertsnodampingontheacousticductmodes.ThesewavemodesactuallywouldgrowinamplitudeastheypropagatethroughthePML.Numericalresultsareprovidedtoillustratetheexistenceofthiskindofamplifyingductedacousticmodes.
2.OPENDOMAINPROBLEMS
LetusconsidertheuseofPMLasabsorbingboundaryconditionforthesolutionofthelinearizedEulerequations(linearizedoverauniformmean?ow)inatwo-dimensionalopendomainasshowninFig.1.Wewilluse??x=??y(themeshsize)asthelengthscale,a0x2(thesoundspeed)asthevelocityscale,
内容需要下载文档才能查看??asthetimescale,andρ0a0(whereρ0isthea0
FIG.1.TwodimensionalcomputationdomainwithPerfectlyMatchedLayersasboundaries.
216TAM,AURIAULT,ANDCAMBULI
meandensity)asthepressurescale.ThedimensionlessgoverningequationsinthePMLareformedbysplittingthelinearizedEulerequationsaccordingtothespatialderivatives.Anabsorptiontermisaddedtoeachoftheequationswithspatialderivativeinthedirectionnormaltothelayer.Forexample,forthePMLontherightboundaryofFig.1(notatthecorners)thegoverningequationsare[4]
???u1+σu1+Mx(u1+u2)+(p1+p2)=0?u2?+My(u1+u2)=0?v1?+σv1+Mx(v1+v2)=0?v2??+My(v1+v2)+(p1+p2)=0???p1+σp1+Mx(p1+p2)+(u1+u2)=0?p2??+My(p1+p2)+(v1+v2)=0,whereMxandMyarethemean?owMachnumbersinthexandydirections.σistheabsorptioncoef?cient.
Supposewelookforsolutionswith(x,y,t)dependenceintheformexp[i(αx+βy?ωt)].Itiseasyto?ndfrom(1)thatthedispersionrelationsofthePMLequationsare
??βMyαMx?1???2α2β2??=0βMyαMx?=0.(2)(3)(1)1?
Inthelimitσ→0,(2)and(3)becomethewell-knowndispersionrelationsoftheacousticandthevorticitywavesofthelinearizedEulerequations.
2.1.MeanFlowParalleltoPML
Dispersionrelations(2)and(3)behaveverydifferentlydependingonwhetherthereisanymean?ownormaltothePML.Whenthemean?owisparalleltothelayer,i.e.,Mx=0,thesolutionsarestable.Thisiseasytoseefrom(3)forthevorticitywave.Physically,ifthemean?owisparalleltothePML,thevorticitywavesinthecomputationdomain,beingconvectedbythemean?ow,cannotenterthelayerandhencewouldnotleadtounstablesolution.
ToshowthatforMx=0allthesolutionsof(2)arestable,asimplemappingwillsuf?ce.Rewrite(2)intheform
α2ω2=β2.F≡(ω?βMy)?22(4)
Figure2showstheimageoftheupper-halfω-planeintheFplane.Theupper-halfω-planeismappedintotheentireFplaneexceptfortheslitADC.Butsinceβ2isrealandpositive,
PMLFORLINEARIZEDEULEREQUATIONS
内容需要下载文档才能查看217
FIG.2.Theimageoftheupperhalfω-planeintheF-plane.
forsubsonicmean?owthepointβ2liesoutsidetheimage.Thusnovalueofωintheupper-halfω-planewouldsatisfyEq.(2)indicatingthatthereisnounstablesolution.
2.2.UnstableSolutionsofthePMLEquations
ForMx=0,thePMLequationssupportunstablesolutions.Itistobenotedthat,unliketheoriginaldispersionrelationoftheacousticwaves,Eq.(2)isaquadricequationinω.Ithastwoextrarootsinadditiontothetwomodi?edacousticmodes.Forsmallσ,thetwospuriousrootsaredampedbutoneofthemodi?edacousticrootsisunstable.Forlargerσ,numericalsolutionsindicatethatoneofthespuriousrootsbecomesunstable.Inanycase,theequationsplittingprocedureandtheadditionofanabsorptionterm,botharevitaltothesuppressionofre?ectionsattheinterfacebetweenthecomputationdomainandthePML,inadvertently,leadtoinstabilities.
Forsmallσ,therootsof(2)and(3)canbefoundbyperturbation.Let
(a)(a)(a)+σω1+σ2ω2+···ω(a)=ω0
(v)(v)(v)+σω1+σ2ω2+···,ω(v)=ω0(5)(6)
wheretherootsof(2)and(3)aredesignatedbyasuperscripta(foracousticwaves)andv
下载文档
热门试卷
- 2016年四川省内江市中考化学试卷
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
- 山东省滨州市三校2017届第一学期阶段测试初三英语试题
- 四川省成都七中2017届高三一诊模拟考试文科综合试卷
- 2017届普通高等学校招生全国统一考试模拟试题(附答案)
- 重庆市永川中学高2017级上期12月月考语文试题
- 江西宜春三中2017届高三第一学期第二次月考文科综合试题
- 内蒙古赤峰二中2017届高三上学期第三次月考英语试题
- 2017年六年级(上)数学期末考试卷
- 2017人教版小学英语三年级上期末笔试题
- 江苏省常州西藏民族中学2016-2017学年九年级思想品德第一学期第二次阶段测试试卷
- 重庆市九龙坡区七校2016-2017学年上期八年级素质测查(二)语文学科试题卷
- 江苏省无锡市钱桥中学2016年12月八年级语文阶段性测试卷
- 江苏省无锡市钱桥中学2016-2017学年七年级英语12月阶段检测试卷
- 山东省邹城市第八中学2016-2017学年八年级12月物理第4章试题(无答案)
- 【人教版】河北省2015-2016学年度九年级上期末语文试题卷(附答案)
- 四川省简阳市阳安中学2016年12月高二月考英语试卷
- 四川省成都龙泉中学高三上学期2016年12月月考试题文科综合能力测试
- 安徽省滁州中学2016—2017学年度第一学期12月月考高三英语试卷
- 山东省武城县第二中学2016.12高一年级上学期第二次月考历史试题(必修一第四、五单元)
- 福建省四地六校联考2016-2017学年上学期第三次月考高三化学试卷
- 甘肃省武威第二十三中学2016—2017学年度八年级第一学期12月月考生物试卷
网友关注
- 《世界贸易组织》教案
- 高中生物教师资格证《原核细胞和真核细胞》教案
- 《江城子·密州出猎》教案
- 《人口迁移》教学设计
- 初中信息技术教师资格证面试《认识DO—Loop语句》教案
- 《归园田居(其一)》教学设计
- 如何合理的设置化学试讲中的作业环节
- 《外汇》教案
- 《国际联盟的建立》题本梳理
- 地理课堂常用导入方法举例
- 初中生物《种子萌发的环境条件》试讲语音示范
- 《别饿坏了那匹马》教学设计
- 高中信息技术教师资格证面试《计算机网络的组成》教案
- 《黄河大合唱》教学设计
- 《消化和吸收》教案
- 《做文明有礼人》教案
- 初中语文《春》试讲语音示范
- 《颜勤礼碑》教学设计
- 《自由与规则不可分》教案
- 初中地理教师资格证“亚细亚”和“欧罗巴” 教案
- 《达姆达姆》教学设计
- 《向心加速度》教学设计
- 初中信息技术教师资格证面试《TCP/IP协议》教案
- 初中美术《对比色与邻近色》试讲语音示范
- 《健身操》教学设计
- 初中历史教师资格面试解析《日军的滔天罪行》教案
- 初中英语听说课《How much is it?》试讲语音示范
- 《波莱罗舞曲》教学设计
- 地理教学过程设计原则及案例分析
- 初中物理《光的反射》试讲语音示范
网友关注视频
- 沪教版牛津小学英语(深圳用) 四年级下册 Unit 3
- 冀教版英语三年级下册第二课
- 河南省名校课堂七年级下册英语第一课(2020年2月10日)
- 苏科版数学七年级下册7.2《探索平行线的性质》
- 冀教版小学数学二年级下册1
- 沪教版八年级下册数学练习册21.3(2)分式方程P15
- 北师大版数学 四年级下册 第三单元 第二节 小数点搬家
- 19 爱护鸟类_第一课时(二等奖)(桂美版二年级下册)_T3763925
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,江苏省
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 3月2日小学二年级数学下册(数一数)
- 七年级下册外研版英语M8U2reading
- 8.对剪花样_第一课时(二等奖)(冀美版二年级上册)_T515402
- 沪教版牛津小学英语(深圳用) 五年级下册 Unit 12
- 外研版英语三起5年级下册(14版)Module3 Unit1
- 人教版历史八年级下册第一课《中华人民共和国成立》
- 【部编】人教版语文七年级下册《过松源晨炊漆公店(其五)》优质课教学视频+PPT课件+教案,辽宁省
- 苏教版二年级下册数学《认识东、南、西、北》
- 冀教版小学数学二年级下册第二单元《有余数除法的简单应用》
- 《空中课堂》二年级下册 数学第一单元第1课时
- 北师大版数学四年级下册3.4包装
- 六年级英语下册上海牛津版教材讲解 U1单词
- 七年级英语下册 上海牛津版 Unit5
- 化学九年级下册全册同步 人教版 第25集 生活中常见的盐(二)
- 冀教版小学数学二年级下册第二单元《租船问题》
- 【部编】人教版语文七年级下册《泊秦淮》优质课教学视频+PPT课件+教案,天津市
- 第19课 我喜欢的鸟_第一课时(二等奖)(人美杨永善版二年级下册)_T644386
- 【部编】人教版语文七年级下册《逢入京使》优质课教学视频+PPT课件+教案,安徽省
- 沪教版八年级下册数学练习册21.3(3)分式方程P17
- 冀教版小学英语四年级下册Lesson2授课视频
精品推荐
- 2016-2017学年高一语文人教版必修一+模块学业水平检测试题(含答案)
- 广西钦州市高新区2017届高三11月月考政治试卷
- 浙江省湖州市2016-2017学年高一上学期期中考试政治试卷
- 浙江省湖州市2016-2017学年高二上学期期中考试政治试卷
- 辽宁省铁岭市协作体2017届高三上学期第三次联考政治试卷
- 广西钦州市钦州港区2016-2017学年高二11月月考政治试卷
- 广西钦州市钦州港区2017届高三11月月考政治试卷
- 广西钦州市钦州港区2016-2017学年高一11月月考政治试卷
- 广西钦州市高新区2016-2017学年高二11月月考政治试卷
- 广西钦州市高新区2016-2017学年高一11月月考政治试卷
分类导航
- 互联网
- 电脑基础知识
- 计算机软件及应用
- 计算机硬件及网络
- 计算机应用/办公自动化
- .NET
- 数据结构与算法
- Java
- SEO
- C/C++资料
- linux/Unix相关
- 手机开发
- UML理论/建模
- 并行计算/云计算
- 嵌入式开发
- windows相关
- 软件工程
- 管理信息系统
- 开发文档
- 图形图像
- 网络与通信
- 网络信息安全
- 电子支付
- Labview
- matlab
- 网络资源
- Python
- Delphi/Perl
- 评测
- Flash/Flex
- CSS/Script
- 计算机原理
- PHP资料
- 数据挖掘与模式识别
- Web服务
- 数据库
- Visual Basic
- 电子商务
- 服务器
- 搜索引擎优化
- 存储
- 架构
- 行业软件
- 人工智能
- 计算机辅助设计
- 多媒体
- 软件测试
- 计算机硬件与维护
- 网站策划/UE
- 网页设计/UI
- 网吧管理